Introduction to the Mathematical and Statistical Foundations of Econometrics

The Multivariate Normal Distribution and Its Application to Statistical Inference

5.1. Expectation and Variance of Random Vectors

Multivariate distributions employ the concepts of the expectation vector and variance matrix. The expected “value” or, more precisely, the expectation vector (sometimes also called the “mean vector”) of a random vector X = (x1 ,...,xn )T is defined as the vector of expected values:

def t-'

E(X) = (E(X1), E(xn))T.

Adopting the convention that the expectation of a random matrix is the matrix of the expectations of its elements, we can define the variance matrix of X as[14]

Var(X) = E [(X - E(X))(X - E(X))T]

/cov(Xb x1) cov(x1, x2) ••• cov(x1; xn )

Подпись: (5.1)cov(x2, x1) cov(x2, x2) ••• cov(x2, xn)

cov(Xn, X1) cov(Xn, X2) ••• cov(Xn, Xn )/

Recallthatthediagonalelementsofthematrix(5.1)arevariances: cov(xj, Xj) = var(xj). Obviously, a variance matrix is symmetric and positive (semi)definite. Moreover, note that (5.1) can be written as

Var(X) = E[XXT] - (E[X])(E[X])T. (5.2)

Similarly, the covariance matrix of a pair of random vectors X and Y is the matrix of covariances of their components:[15]

Cov(X, Y) = E [(X - E(X))(Y - E(Y))T]. (5.3)

Note that Cov(Y, X) = Cov(X, Y)T. Thus, for each pair X, Y there are two covariance matrices, one being the transpose of the other.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.