Introduction to the Mathematical and Statistical Foundations of Econometrics

The Multivariate Normal Distribution

Now let the components of X = (x,..., xn)T be independent, standard nor­mally distributed random variables. Then, E(X) = 0(e Kn) and Var(X) = In. Moreover, the joint density f (x) = f (x,.xn )of X in this case is the product of the standard normal marginal densities:

A exp(-x2

f(x) = f(X1, ...,xn) = П -------------------

j=1 jln

_ exp (-2 ЕП=1xj) exp (-1XTx)

(fbn )n (fbn )n '

The shape of this density for the case n = 2 is displayed in Figure 5.1.

Next, consider the following linear transformations of X : Y = д + AX, where д = (д1,..., дп )T is a vector of constants and A is a nonsingu­lar n x n matrix with nonrandom elements. Because A is nonsingular and therefore invertible, this transformation is a one-to-one mapping with inverse X = A-1 (Y - д). Then the density function g(y) of Yis equal to

Подпись: g(y)Подпись: -A-1 д)/д y)| f (A-1 y - A-1 д) |det( A)| f (x )|det(9 x/дy )| f (A-1 y - A-V)|det(d(A-1 y

f (A-1 y - A-V)|det(A-1)| =

exp [-2(y - д)T(A 1)TA 1(y - д)]

(V2n )n |det( A)|

exp [-2(y - д)T(AAT)-1(y - д)] (V2n )V |det( AAT)| .

Observe that д is the expectation vector of Y : E(Y) = д + A (E(X)) = д. But what is AAT? We know from (5.2) that Var(Y) = E [iYT] - дд'1'. Therefore, substituting Y = д + AX yields

Var(Y) = E[(д + AX)(^T + XTAT) - ддТ]

= д( E (XT)) AT + A(E ^д^ + A( E (XXT)) AT = AAT

image307

Figure 5.1. The bivariate standard normal density on [-3, 3] x [-3, 3].

 

because E(X) = 0 and E[XXT] = In. Thus, AAT is the variance matrix of Y. This argument gives rise to the following definition of the n-variate normal distribution:

Подпись: g(y) Подпись: exp [-2(y - д)Т£ 1(y - д)] (V2n)«ydet(£) Подпись: (5.4)

Definition 5.1: Let Y be an n x 1 random vector satisfying E(Y) = д and Var(Y) = £, where £ is nonsingular. Then Y is distributed Nn (д, £) if the density g(y) ofY is of the form

In the same way as before we can show that a nonsingular (hence one-to-one) linear transformation of a normal distribution is normal itself:

Theorem 5.1: Let Z = a + BY, where Y is distributed Nn(д, £) and B is a nonsingular matrix of constants. Then Z is distributed Nn (a + B д, B£ BT).

Proof: First, observe that Z = a + BY implies Y = B-1(Z - a). Let h(z) be the density of Z and g(y) the density of Y. Then

h(z) = g(y)|det(9y/d z)|

= g(B-1 z - B-1a)|det(9(B-1 z - B-1a)/9z)|

_ g(B-1 z - B-1a) g(B-1(z - a))

|det(B)| det(BBT)

exp [-2(B-1(z - a) - д)^-1(B-1(z - a) - д)]

(V2n)V det(£Vdet(BBT)
exp [-2(z - a - B ifT(B£BT)-1(z - a - B д)]

= (V2n )V det( B £ B T) '

Q. E.D.

I will now relax the assumption in Theorem 5.1 that the matrix B is a nonsin­gular n x n matrix. This more general version of Theorem 5.1 can be proved using the moment-generating function or the characteristic function of the mul­tivariate normal distribution.

Theorem 5.2: Let Y be distributed Nn(д, E). Then the moment-generating function of Y is m(t) = exp(tTд + tTEt/2), and the characteristic of Y is tp(t) = exp(i ■ tтд — tTEt/2).

image311

Proof: We have

Because the last integral is equal to 1, the result for the moment-generating function follows. The result for the characteristic function follows from p(t) = m(i ■ t). Q. E.D.

Theorem 5.3: Theorem 5.1 holds for any linear transformation Z = a + BY.

Proof: Let Z = a + BY, where B is m x n. It is easy to verify that the char­acteristic functionof Z is vz(t) = E[exp(i ■ tTZ)] = E[exp(i ■ tT(a + BY))] =

exp(i ■ tTa)E[exp(i ■ tTBY)] = exp(i ■ (a + Bд)тt - 1 tTBEBTt). Theorem

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.