Introduction to the Mathematical and Statistical Foundations of Econometrics

The Mean Value Theorem

Consider a differentiable real function f (x) displayed as the curved line in Figure II.1. We can always find a point c in the interval [a, b] such that the slope of f (x) at x = c, which is equal to the derivative f(c), is the same as the slope of the straight line connecting the points (a, f(a)) and (b, f (b)) simply by shifting the latter line parallel to the point where it be­comes tangent to f (x). The slope of this straight line through the points (a, f (a)) and (b, f (b)) is (f (b) - f (a))/(b - a). Thus, at x = c we have f''(c) = (f (b) - f (a))/(b - a), or equivalently, f (b) = f (a) + (b - a)f(c). This easy result is called the mean value theorem. Because this point c can also be expressed as c = a + X(b - a), with 0 < X = (c - a)/(b - a) < 1, we can now state the mean value theorem as follows:

Theorem II.8(a): Let f (x) be a differentiable real function on an interval [a, b] with derivative f'(x). For any pair ofpoints x, x0 є [a, b] there exists a X є [0, 1] such that f (x) = f (x0) + (x - x0) f'(x0 + X(x - x0)).

This result carries over to real functions of more than one variable:

Theorem II.8(b): Let f (x) be a differentiable real function on a convex subset C of R*. For any pair of points x, x0 є C there exists a X є [0, 1] such that

f(x) = f(x0) + (x - x0)T(9/9yT)f(y)|y=x0+X(x-x0).

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.