Introduction to the Mathematical and Statistical Foundations of Econometrics

Testing Parameter Restrictions

8.5.1. The Pseudo t-Test and the Wald Test

image723 Подпись: РЙ. Подпись: (8.53)

In view of Theorem 8.2 and Assumption 8.3, the matrix Й can be estimated consistently by the matrix Й in (8.53):

If we denote the ith column of the unit matrix Im by ei it follows now from (8.53), Theorem 8.4, and the results in Chapter 6 that

Theorem 8.5: (Pseudo t-test) under Assumptions 8.1-8.3, ti = л/не^в/ JejЙ-1ei ^dN(0, 1) ifeTeo = 0.

Thus, the null hypothesis Й0 : eTв0 = 0, which amounts to the hypothesis that the ith component of в0 is zero, can now be tested by the pseudo t-value ti in the same way as for M-estimators.

Next, consider the partition

в0 = (вз °) , в1,0 Є Rm-r, в2,0 Є Rr (8.54)

and suppose that we want to test the null hypothesis в2,0 = 0. This hypothesis corresponds to the linear restriction Rв0 = 0, where R = (O, Ir). It follows from Theorem 8.4 that under this null hypothesis

Подпись: (8.55)4nR^ ^d Nr(0, R^1 RT).

image727

is the restricted ML estimator. Note that к is always between 0 and 1. The intuition behind the LR test is that, if 02,0 = 0, then к will approach 1 (in probability) as n because then both the unrestricted ML estimator 0 and the restricted ML estimator 0 are consistent. On the other hand, if the null hypothesis is false, then к will converge in probability to a value less than 1.

Theorem 8.7: (LR test) Under Assumptions 8.1-8.3, —2 In (к) ^d хГ if

02,0 = 0.

Подпись: fn(01 — 01,0) image729 image730 Подпись: + op (1)>

Proof: As in (8.38) we have

where H1,1 is the upper-left (m — r) x (m — r) block of H 'Hi, i HiO

Подпись: H =H2,1 H2,2

and consequently

Гв л 4 (H— 0 (дЩі„(0o))A/^V,14 ,0,04

■ло - ад = - 0 о) ^—щ—) + °>(1)- (8 58)

Subtracting (8.58) from (8.34) and using condition (8.33) yield

гл Л4 (r-r-і (H - 0\( d ln(Ln(0o))/Vn

- ад = - H 0 o))[------------------ Щ----------- )

Подпись: (8.59)+ Op ( 1 ) ^dNm (0, A),

image734 Подпись: (8.60)

where

The last equality in (8.60) follows straightforwardly from the partition (8.56).

image736
Next, it follows from the second-order Taylor expansion around the unre­stricted ML estimator в that, for some fj є [0, 1],

Thus, we have

-2 ln(X) = (A-1/Vn(0 - 9)) (A1/2HA1/2) (A-1/Vn'(0 - 9))

+ Op (1). (8.63)

Because, by (8.59), A-1/2 «Jn(§ - §) ^d Nm(0, Im), and by (8.60) the matrix A1/2 H A1/2 is idempotent with rank (Д1/2 Й A1/2) = trace(A1/2 Й A1/2) = r, the theorem follows from the results in Chapters 5 and 6. Q. E.D.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.