Introduction to the Mathematical and Statistical Foundations of Econometrics

Series Expansion of the Complex Logarithm

For the case x є К, |x | < 1, it follows from Taylor’s theorem that ln(1 + x) has the series representation

TO

ln(1 + x) = ^(-1)*-1 xk /k. (III.18)

k=1

I will now address the issue of whether this series representation carries over if we replace x by i ■ x because this will yield a useful approximation of exp(i ■ x),
which plays a key role in proving central limit theorems for dependent random variables.[25] See Chapter 7.

If (III.18) carries over we can write, for arbitrary integers m,

TO

log(1 + i ■ x) = ^2(—1)k-1ikxk/k + i ■ mn

k=1

TO

= ( — 1)2k-1i 2kx 2k / (2k)

k=1

TO

+ (-1)2k-1-1i2k-1 x2k-1/(2k - 1) + i ■ mn

k=1

TO

= J2 (—1)k-1 x 2k/(2k)

k=1

TO

+ i J2(—1)k-1 x2k-1/(2k - 1) + i ■ mn. (III.19)

k=1

On the other hand, it follows from (III.17) that 12

log(1 + i ■ x) = ln(1 + x2) + i ■ [arctan(x) + mn].

Therefore, we need to verify that, for x є К, |x | < 1,

Подпись: (III.20)

image984

1TO

-In(1 + x 2) = J2 (-1)k-1 x 2k/(2k)

(1 + i ■ x) exp(-x2/2 + r(x)), where |r(x)| <|x |3 .

Подпись: 1 Подпись: For x є К with |x | < 1, exp(i ■ x)

2 k=1

and

TO

arctan(x) = (_1)k-1 x2*-1/(2* - 1). (Ш.21)

k=1

Equation (Ш.20) follows from (III.18) by replacing x with x2. Equation (III.21) follows from

Подпись: TO g(_1)k-1 x2k_2 k=1 d TO

~Y (-1)k-1 x2k-1/(2k - 1) dx

Подпись: „2k

-

k=0

1 1

and the facts that arctan (0) = 0 and darctan(x) 1

dx 1 + x 2

Therefore, the series representation (III.19) is true.

III.2. Complex Integration

In probability and statistics we encounter complex integrals mainly in the form of characteristic functions, which for absolutely continuous random variables are integrals over complex-valued functions with real-valued arguments. Such functions take the form

f (x) = q>(x) + i ■ ф (x), x є К,

where ф and ф are real-valued functions on R. Therefore, we may define the (Lebesgue) integral off over an interval [a, b] simply as

b b b

j f (x )dx = j y>(x)dx + i ■ j ф (x)dx

a a a

provided of course that the latter two integrals are defined. Similarly, if ц is a probability measure on the Borel sets in Rk and Re( f (x)) and Im( f (x)) are Borel-measurable-real functions on Rk, then

f Jx )d„.(x) = f Re(/<x ))dx(x) + . f M</<x l)^),

provided that the latter two integrals are defined.

Integrals of complex-valued functions of complex variables are much trickier, though. See, for example, Ahlfors (1966). However, these types of integrals have limited applicability in econometrics and are therefore not discussed here.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.