Introduction to the Mathematical and Statistical Foundations of Econometrics

Quality Control in Practice

The problem in applying this result in quality control is that K is unknown. Therefore, in practice the following decision rule as to whether K < R or not is followed. Given a particular number r < n, to be determined at the end of this subsection, assume that the set of N bulbs meets the minimum quality requirement K < R if the number k of defective bulbs in the sample is less than or equal to r. Then the set A(r) = {0, 1,..., r} corresponds to the assumption that the set of N bulbs meets the minimum quality requirement K < R, hereafter indicated by “accept,” with probability

r

P(A(r)) = £ P({k}) = pr(n, K), (1.12)

k=0

say, whereas its complement A(r) = {r + 1n} corresponds to the assump­tion that this set of N bulbs does not meet this quality requirement, hereafter indicated by “reject,” with corresponding probability

P(A(r)) = 1 - Pr(n, K).

Given r, this decision rule yields two types of errors: a Type I error with prob­ability 1 - pr (n, K) if you reject, whereas in reality K < R, and a Type II error with probability pr(K, n) if you accept, whereas in reality K > R. The probability of a Type I error has upper bound

pi(r, n) = 1 - minpr(n, K), (1.13)

K < R

and the probability of a Type II error upper bound

p2(r, n) = maxpr(n, K). (1.14)

K >R

To be able to choose r, one has to restrict either p1(r, n) or p2(r, n), or both. Usually it is the former option that is restricted because a Type I error may cause the whole stock of N bulbs to be trashed. Thus, allow the probability of a Type I error to be a maximal a such as a = 0.05. Then r should be chosen such that p1(r, n) < a. Because p1(r, n) is decreasing in r, due to the fact that (1.12) is increasing in r, we could in principle choose r arbitrarily large. But because p2(r, n) is increasing in r, we should not choose r unnecessarily large. Therefore, choose r = r(n|a), where r(n|a) is the minimum value of r for which p1(r, n) < a. Moreover, if we allow the Type II error to be maximal в, we have to choose the sample size n such that p2(r(n |a), n) < в.

As we will see in Chapters 5 and 6, this decision rule is an example of a statistical test, where H0 : K < R is called the null hypothesis to be tested at

Подпись: 7This section may be skipped.

the a x 100% significance level against the alternative hypothesis H1 : K > R. The number r (n |a) is called the critical value of the test, and the number k of defective bulbs in the sample is called the test statistic.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.