Introduction to the Mathematical and Statistical Foundations of Econometrics

Projections, Projection Matrices, and Idempotent Matrices

Consider the following problem: Which point on the line through the origin and point a in Figure I.3 is the closest to point b? The answer is point p in Figure

I.4. The line through b and p is perpendicular to the subspace spanned by a, and therefore the distance between b and any other point in this subspace is larger than the distance between b and p. Point p is called the projection of b on the subspace spanned by a. To find p, let p = c ■ a, where c is a scalar. The distance between b and p is now ||b - c ■ a\; consequently, the problem is to find the scalar c that minimizes this distance. Because ||b - c ■ a\ is minimal if and only if

||b — c ■ a||2 = (b — c ■ a)T(b — c ■ a) = bTb — 2c ■ aTb + c2aTa

is minimal, the answer is c = aTb/aTa; hence, p = (aTb/aTa) ■ a.

Similarly, we can project a vector y in Rn on the subspace of Rn spanned by a basis [x,xk} as follows. Let X be the n x к matrix with columns

x1,...,xk. Any point p in the column space R(X) of X can be written as p = Xb, where b є Rk. Then the squared distance between y and p = Xb is

IIy - XbII2 = (y - Xb)T(y - Xb)

= yTy - bTXTy - yTXb + bTXTXb = yTy - 2bTXTy + bTXTXb, (I.39)

where the last equality follows because yTXb is a scalar (or, equivalently, a 1 x 1 matrix); hence, yTXb = (yTXb)T = bTXTy. Given Xand y, (I.39) is a quadratic function of b. The first-order condition for a minimum of (I.39) is given by

Подпись: д IIy - Xb ||2 d bT 2 XTy + 2 XT Xb = 0,

which has the solution

b = (XT X)-1XTy.

Thus, the vectorp in R(X) closest to y is

p = X(XT X)-1XTy, (I.40)

which is the projection of y on R(X).

Matrices of the type in (I.40) are called projection matrices:

Definition I.11: Let A be an n x k matrix with rankk. Then the n x n matrix P = A( AT A)-1 AT is called a projection matrix: For each vector x in Rn, Px is the projection ofx on the column space of A.

Note that this matrix P is such that PP = A(ATA)-1 ATA(ATA)-1 AT) = A(ATA)-1 AT = P. This is not surprising, though, because p = Px is already in R(A); hence, the point in R(A) closest to p is p itself.

Definition I.12: Ann x n matrix M is called idempotent if MM = M.

Thus, projection matrices are idempotent.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.