Introduction to the Mathematical and Statistical Foundations of Econometrics

Positive Definite and Semidefinite Matrices

Another set of corollaries of Theorem I.36 concern positive (semi)definite ma­trices. Most of the symmetric matrices we will encounter in econometrics are positive (semi)definite or negative (semi)definite. Therefore, the following re­sults are of the utmost importance to econometrics.

Definition I.23: Ann x n matrix A is called positive definite if, for arbitrary vectors x є К” unequal to the zero vector, xT Ax > 0, and it is called positive semidefinite if for such vectors x, xTAx > 0. Moreover, A is called negative (semi)definite if —A is positive (semi)definite.

Note that symmetry is not required for positive (semi)definiteness. However, x TAx can always be written as

x T Ax = x T^-A + - AT^ x = x T Asx, (I.62)

for example, where As is symmetric; thus, A is positive or negative (semi)definite if and only if As is positive or negative (semi)definite.

Theorem I.39: A symmetric matrix is positive (semi)definite if and only if all its eigenvalues are positive (nonnegative).

Proof: This result follows easily from xTAx = xT QЛ QTx = yTAy = J2j к jyj, where y = QTx with components yj. Q. E.D.

On the basis of Theorem I.39, we can now define arbitrary powers of positive definite matrices:

Definition I.24: If A is a symmetric positive (semi)definite n x n matrix, then for а є К [a > 0] the matrix A to the power a is defined by Aa = QЛa QT, where Ла is a diagonal matrix with diagonal elements the eigenvalues of A to the power a : Ла = diag(X<a,.X<a) and Q is the orthogonal matrix of corre­sponding eigenvectors.

The following theorem is related to Theorem I.8.

Theorem I.40: If A is symmetric and positive semidefinite, then the Gaussian elimination can be conducted without need for row exchanges. Consequently, there exists a lower-triangular matrix L with diagonal elements all equal to 1 and a diagonal matrix D such that A = LDLT.

Proof: First note that by Definition 1.24 with a = 1/2, A1/2 is symmetric and (A1/2)tA1/2 = A1/2A1/2 = A. Second, recall that, according to Theorem I.17 there exists an orthogonal matrix Q and an upper-triangular matrix U such that A1/2 = QU; hence, A = (A1/2)TA1/2 = UTQTQU = UTU. The matrix UT is lower triangular and can be written as UT = LD„, where D„ is a diagonal matrix and L is a lower-triangular matrix with diagonal elements all equal to 1. Thus, A = LDkD„LT = LDLT, where D = D„D„. Q. E.D.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.