Introduction to the Mathematical and Statistical Foundations of Econometrics

Modes of Convergence

5.3. Introduction

Toss a fair coin n times, and let Yj = 1 if the outcome of the j th tossing is heads and Yj = — 1 if the outcome involved is tails. Denote Xn = (1/n)Yl j= Yj. For the case n = 10, the left panel of Figure 6.1 displays the distribution function Fn(x)1 of Xn on the interval [—1.5, 1.5], and the right panel displays a typical plot of Xk for k = 1, 2,..., 10 based on simulated Yj’s 2

Now let us see what happens if we increase n: First, consider the case n = 100 in Figure 6.2. The distribution function Fn(x) becomes steeper for x close to zero, and Xn seems to tend towards zero.

These phenomena are even more apparent for the case n = 1000 in Figure

6.3.

What you see in Figures 6.1—6.3 is the law of large numbers: Xn = (Vn)£n = Yj ^ E[Y1] = 0 in some sense to be discussed in Sections 6.2­

6.3 and the related phenomenon that Fn(x) converges pointwise in x = 0 to the distribution function F(x) = I (x > 0) of a “random” variable X satisfying P [X = 0] = 1.

Next, let us have a closer look at the distribution function of *JnXn : Gn (x) = Fn (x Дfn) with corresponding probabilities P [лfnXn = (2k — п)Д/й], k = 0, 1,..., n and see what happens if n ^<x>. These probabilities can be displayed

1 Recall that n(Xn + 1)/2 = YTj=1(Yj + 1)/2 has a binomial (n, 1/2) distribution, and thus the distribution function Fn (x) of Xn is

Fn(x) = P[Xn < x] = P[n(Xn +1)/2 < n(x + 1)/2]

min(n,[n(x+)/2]) /

= E (k) (1/2 )n •

where [z] denotes the largest integer < z, and the sum 1= о is zero if m < 0.

2 The Yj’s have been generated as Yj = 2 • I(Uj > 0.5) — 1, where the Uj’s are random drawings from the uniform [0, 1] distribution and I(•) is the indicator function.

Подпись: _~n 13 ^ О Ї1.5 Figure 6.1. n = 10. Left: Distribution function of Xn. Right: Plot of Xk for к = 1, 2,..., n.

in the form of a histogram:

^ ґ л P [2(к — 1)/—n — —n < —nXn < 2k/—n — —n]

Hn (x) = —

2/ n

ifx e (2(k — 1)/—n — —n, 2k/—n — —n], к = 0, 1,...,n,

Hn(x) = 0 elsewhere.

Figures 6.4-6.6 compare Gn (x) with the distribution function of the standard normal distribution and Hn (x) with the standard normal density for n = 10, 100 and 1000.

image392

What you see in the left-hand panels in Figures 6.4-6.6 is the central limit theorem:

pointwise in x, and what you see in the right-hand panels is the corresponding fact that

Gn(x + S) — Gn(x) exp[ x2/2]

lim lim = — .

s;0 n >to S 2n

The law of large numbers and the central limit theorem play a key role in statistics and econometrics. In this chapter I will review and explain these laws.

Figure 6.3. n = 1000. Left: Distribution function of Xn. Right: Plot of Xk for к = 1, 2,..., n.

image393

Figure 6.4. n = 10. Left: Gn(x). Right: Hn(x) compared with the standard normal distribution.

image394

Figure 6.5. n = 100. Left: Gn(x). Right: Hn(x) compared with the standard normal distribution.

image395

Figure 6.6. n = 1000. Left: Gn(x). Right: Hn(x) compared with the standard normal distribution.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.