Introduction to the Mathematical and Statistical Foundations of Econometrics

Mixing Conditions

Inspection of the proof of Theorem 7.5 reveals that the independence assumption can be relaxed. We only need independence of an arbitrary set A in F—T and an arbitrary set C in Ft—k = a (Xt, Xt—1, Xt—2,Xt—k) for k > 1. A sufficient condition for this is that the process Xt is a-mixing or y-mixing:

Definition 7.5: Let F— T = a (Xt, Xt-1, Xt -2, ■■■), = a (Xt, X+1,

Xt +2,...) and

a(m) = sup sup |P(A n B) — P(A) ■ P(B)|,

1 AeF”, Be^—T

y(m) = sup sup | P (A| B) — P (A)|.

1 ^ , bc F—m

If limm^Ta(m) = 0, then the time series process Xt involved is said to be а-mixing; iflimm^Ty(m) = 0, Xt is said to be y-mixing.

Note in the a-mixing case that

sup |P(A n B) — P(A) ■ P(B)|

Ae. F‘t—k, BeF— t

< limsupsup sup |P(A n B) — P(A) ■ P(B)|

m^T t, cz” D cz-t —k—m

Ae^ t —k, Be^ — T

= limsup a(m) = 0;

hence, the sets A e Ft—k, B e F— T are independent. Moreover, note that a(m) < y(m), and thus y-mixing implies а-mixing. Consequently, the latter is the weaker condition, which is sufficient for a zero-one law:

Theorem 7.6: Theorem 7.5 carries over for а-mixing processes.

Therefore, the following theorem is another version of the weak law of large numbers:

Theorem 7.7: IfXt is a strictly stationary time series process with an a-mixing base and E[|X1|] < to, then plimn^TO(1 / n)^f"= 1 Xt = E[X1],

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.