Introduction to the Mathematical and Statistical Foundations of Econometrics

Maximum Likelihood Theory

8.1. Introduction

Consider a random sample Z ь..., Zn from a ^-variate distribution with density f (z0), where в0 є © c 1” is an unknown parameter vector with © a given parameter space. As is well known, owing to the independence of the Zj’s, the joint density function of the random vector Z = (ZT, zj )T is the product of the marginal densities, ПП=1 f (zj в0). The likelihood function in this case is defined as this joint density with the nonrandom arguments zj replaced by the corresponding random vectors Zj, and в 0 by в:

n

L n (в) = П f (Zjв). (8.1)

j=1

The maximum likelihood (ML) estimator of в0 is now в = argmaxeє©Ln (в), or equivalently,

в = argmaxln(L n (в)), (8.2)

в є©

where “argmax” stands for the argument for which the function involved takes its maximum value.

The ML estimation method is motivated by the fact that, in this case,

E[ln(Ln(в))] < E[ln(Ln(во))]. (8.3)

To see this, note that ln(u) = u — 1 for u = 1 and ln(u) < u — 1for0 < u < 1 and u > 1. Therefore, if we take u = f (Zj в)/f (Zj в0) it follows that, for all в, ln(f (Zjв)/f (Zjв0)) < f (Zjв)/f (Zjв0) — 1, and if we take expectations

it follows now that

image614

E[ln(f (Zjв)/f(Zj |0o))] < E[f (Zjв)/f(Zj |0q)] - 1

Summing up for j = 1, 2,...,n, (8.3) follows.

This argument reveals that neither the independence assumption of the data Z = (ZT, ZT)T nor the absolute continuity assumption is necessary for (8.3). The only condition that matters is that

Подпись: (8.4)E [Ln (в )/Ln (в0)] < 1

for all в e © and n > 1. Moreover, if the support of Zj is not affected by the parameters in в0 - that is, if in the preceding case the set {z e r” : f (ze) > 0} is the same for all в e © - then the inequality in (8.4) becomes an equality:

Подпись: (8.5)E [Ln (в )/L n (в0)] = 1

for all в e © and n > 1. Equality (8.5) is the most common case in eco­nometrics.

To show that absolute continuity is not essential for (8.3), suppose that the Zj’s are independent and identically discrete distributed with support S, that is, for all z e S, P[Zj = z] > 0 and J]zeS P[Zj = z] = 1. Moreover, now let f (ze0) = P[Zj = z], where f (ze) is the probability model involved. Of course, f (ze) should be specified such that J]zeS f (ze) = 1forall в e ©.For example, suppose that the Zj’s are independent Poisson (в0) distributed, and thus f (ze) = е-ввz/z! and S = {0, 1, 2,...}. Then the likelihood function involved also takes the form (8.1), and

E[f(Zjв)/f(Zjв0)] = g f(z^) = g f(z^) = 1;

hence, (8.5) holds in this case as well and therefore so does (8.3).

In this and the previous case the likelihood function takes the form of a prod­uct. However, in the dependent case we can also write the likelihood function as a product. For example, let Z = (ZT, Zj)T be absolutely continuously distributed with joint density fn (zn,..., zi в0), where the Zj’s are no longer independent. It is always possible to decompose a joint density as a product of conditional densities and an initial marginal density. In particular, letting, for t > 2,

ft (ztzt-1, ..., Zl, в) = ft (zt, ..., z1 в )/ft-1(zt-1, ..., z1 в),

we can write

n

fn (zn, Zlв) = fi(zie )f[ ft (zt zt-1, ...,Z1,0).

t =2

Therefore, the likelihood function in this case can be written as

n

L n (в) = fn (Zn, Zi) = fi( Z ів Щ f (Zt Zt-i, Z і, в).

t =2

(8.6)

Подпись: P Подпись: E Подпись: L t (в)/L t-і(в) Lt(во)/L t-і(во) Подпись: Zt-і, Zі
image620

It is easy to verify that in this case (8.5) also holds, and therefore so does (8.3). Moreover, it follows straightforwardly from (8.6) and the preceding argument that

Подпись: (8.7)Подпись: , ZO < 0) (8.8)for t = 2, 3,..., n;

hence,

P(E[ln(Lt(в)/Lt-і(в)) - ln(Lt(во)/Lt-і(во))Zt-і = і for t = 2, 3,...,n.

Of course, these results hold in the independent case as well.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.