Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of X is neither discrete nor absolutely continuous?

Definition 2.12: The mathematical expectation of a random variable X is defined as E(X) = f X(o)dP(o) or equivalently as E(X) = f xdF(x) (cf(2.15)), whereFis the distribution function ofX, provided that the integrals involved are defined. Similarly, if g(x) is a Borel-measurable function on Kk and Xis a random vector in Kk, then, equivalently, E[g(X)] = f g(X(o))dP(o) = f g(x )dF(x), provided that the integrals involved are defined.

Note that the latter part of Definition 2.12 covers both examples (2.1) and (2.3).

As motivated in the introduction, the mathematical expectation E [g(X)] may be interpreted as the limit of the average payoff of a repeated game with pay­off function g. This is related to the strong law of large numbers, which we
will discuss in Chapter 7: Let X1, X2, X3, ...be a sequence of independent random variables or vectors each distributed the same as X, and let g be a Borel-measurable function such that E[|g(X)|] < to. Then

P ( Hm(1/n)£ g(Xj) = E[g(X)] J = 1.

There are a few important special cases of the function g - in particular the variance ofX, which measures the variation of Xaround its expectation E(X) - and the covariance of a pair of random variables X and Y, which measures how Xand Yfluctuate together around their expectations:

Подпись: corr(X, Y) Подпись: cov(X, Y) л/vafi X)^/ var(Y) Подпись: P(X, Y).

Definition 2.13: The m’s moment (m = 1, 2, 3,...) of a random variable X is definedasE (Xм), and them's central moment ofX is defined by E (| X — /лх |m), where /лх = E(X). The second central moment is called the variance of X, var(X) = E [(X — ixx )2] = ax, for instance. The covariance of a pair (X, Y) of random variables is defined as cov(X, Y) = E[(X — цх) (Y — /лу)], where /лх is the same as before, and /лу = E(Y). The correlation (coefficient) of a pair (X, Y) of random variables is defined as

The correlation coefficient measures the extent to which Y can be approxi­mated by a linear function of X, and vice versa. In particular,

If exactly Y = a + вX, then corr(X, Y) = 1 if в > 0,

corr(X, Y) =-1 if в < 0. (2.17)

Moreover,

Definition 2.14: Random variables X and Y are said to be uncorrelated if cov(X, Y) = 0. A sequence of random variables Xj is uncorrelated if, for all i = j, Xi and Xj are uncorrelated.

Furthermore, it is easy to verify that

Theorem 2.19: If Xi,...,Xn are uncorrelated, then var(Jfj =1 Xj) =

T! j= var(Xj).

Proof: Exercise.

2.5. Some Useful Inequalities Involving Mathematical Expectations

There are a few inequalities that will prove to be useful later on - in particular the inequalities of Chebishev, Holder, Liapounov, and Jensen.

2.6.1. Chebishev’s Inequality

Let X be a nonnegative random variable with distribution Function F(x), and let p(x) be a monotonic, increasing, nonnegative Borel-measurable function on [0, to). Then, for arbitrary є > 0,

E [p(X)] = j p(x)dF(x ) = j p(x)dF(x)

{p(x )>р(є)}

+ j p(x)dF(x) > j p(x)dF(x) > р(є)

{р(х)<р(є)} {р(х)>р(є)}

x j dF(x) = р(є) j dF(x) = р(є)(1 — F(є));

{p(x )>р(є)} {x >є}

(2.18)

hence,

P(X > є) = 1 — F(є) < E[р(Х)]/р(є). (2.19)

In particular, it follows from (2.19) that, for a random variable Ywith expected value ц. у = E(Y) and variance oj,

P({« є П : |Y(«) — ^y| >J0y/) < є. (2.20)

2.6.2. Holder’s Inequality

Holder’s inequality is based on the fact that ln(x) is a concave function on (0, to): for 0 < a < b, and 0 < X < 1, ln(Xa + (1 — X)b) > Xln(a) + (1 — X) ln(b);

hence,

Xa + (1 — X)b > aX b1—X. (2.21)

Подпись: 1 |X| ^ E (| X |p) 4 image078 Подпись: | X |p 1/pZ |Y |q 1/q E (| X |p)) U (|Y |q))

Now let X and Y be random variables, and put a = |X|p/E(|X|p), b = |Y|q/E(|Y|q), where p > 1 and p—1 + q—1 = 1. Then it follows from (2.21), with X = 1/p and 1 — X = 1/q, that

= | X ■ Y |

(E(|X|p))1/p (E(|Y|q))1/q '

Taking expectations yields Holder’s inequality:

E(|X ■ Y|) < (E(|X|p))1/p (E(|Y |q))1/q,

where p > 1 and 1 + - = 1. (2.22)

pq

Forthecasep = q = 2, inequality (2.22)reads E(|X ■ Y|) < ^E(X2)^/E(Y2), which is known as the Cauchy-Schwartz inequality.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.