Introduction to the Mathematical and Statistical Foundations of Econometrics

Inverse of a Matrix in Terms of Cofactors

Theorem I.31 now enables us to write the inverse of a matrix A in terms of cofactors and the determinant as follows. Define

image874 Подпись: cofn,1( A)^ cofn,n(A) Подпись: (I.57)

Definition I.20: The matrix

is called the adjoint matrix of A.

Note that the adjoint matrix is the transpose of the matrix of cofactors with typical (i, j)’s element cof;,j(A). Next, observe from Theorem I.31 that det( A) — Jfk—1 ai, k cofijk (A) is just the diagonal element i of A ■ Aadjoint. More­over, suppose that row j of A is replaced by row i, and call this matrix B. This has no effect on cofj, k(A), but ^nk—1 ai, kcofj, k(A) — Yl—1 a, kcof, k(B) is now the determinant of B. Because the rows of B are linear dependent, det(B) — 0. Thus, we have

ТИ—1 ai, k cofj, k (A) — det( A) if i — j,

— 0 if i — j;

hence,

Theorem I.32: If det(A) — 0, then A 1 — jtj) Aadjoint.

Подпись: d det(A) d ai, j Подпись: cofi, j (A). Подпись: (I.58)

Note that the cofactors cofj, k(A) do not depend on at, j. It follows therefore from Theorem I.31 that

image880 Подпись: (I.59)

Using the well-known fact that d ln(x )/dx — 1/x, we find now from Theorem I.32 and (I.58) that

Note that (I.59) generalizes the formula d ln(x)/dx = 1/x to matrices. This re­sult will be useful in deriving the maximum likelihood estimator of the variance matrix of the multivariate normal distribution.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.