Introduction to the Mathematical and Statistical Foundations of Econometrics

Follows now from Theorem 5.2. Q. E. D

Note that this result holds regardless of whether the matrix BE BT is non­singular or not. In the latter case the normal distribution involved is called “singular”:

Definition 5.2: Ann x 1 random vector Y has a singular Nn (д, E) distribution if its characteristic function is of the form yY (t) = exp(i ■ t т д - 21TE t) with E a singular, positive semidefinite matrix.

Подпись:
Because of the latter condition the distribution of the random vector Y in­volved is no longer absolutely continuous, but the form of the characteristic function is the same as in the nonsingular case - and that is all that matters. For example, let n = 2 and

*=й -=(0 "0.

where a 2 > 0 but small. The density of the corresponding N2(*, —) distribution

Подпись: f (У1. У2|а ) Подпись: exp( - y2/2) .. exP ( - y|/(2a2)) V2n a V2n Подпись: (5.5)

of Y = (Yb Y2)t is

Then lima4.0 f (yі, У2Іа) = 0 if y2 = 0, and lima40 f(yi, У2Іа) = то if y2 = 0. Thus, a singular multivariate normal distribution does not have a density.

In Figure 5.2 the density (5.5) for the near-singular case a2 = 0.00001 is displayed. The height of the picture is actually rescaled to fit in the box [-3, 3] x [-3, 3] x [-3, 3]. If we let a approach zero, the height of the ridge corresponding to the marginal density of Y1 will increase to infinity.

The next theorem shows that uncorrelated multivariate normally distributed random variables are independent. Thus, although for most distributions uncor - relatedness does not imply independence, for the multivariate normal distribu­tion it does.

Theorem 5.4: Let X be n-variate normally distributed, and let X1 and X2 be subvectors of components of X. If X1 and X2 are uncorrelated, that is, Cov(X1, X2) = O, then X1 and X2 are independent.

Подпись: E (X) = Подпись: *1 Iі2 Подпись: Var( X) Подпись: —11 —12 —21 — 22

Proof: Because X1 and X2 cannot have common components, we may with­out loss of generality assume that X = (XT, XT)T, X1 є Rk, X2 є Rm. Parti­tion the expectation vector and variance matrix of X conformably as

Then £12 = O and £21 = O because they are covariance matrices, and X1 and X2 are uncorrelated; hence, the density of X is

f (x) = f (x, X2)

т

-1 г

1

(xA (mA

£11 0

2

.W Vм2/.

0 £22

exp

image320

(V2^^det (£ e022)

_ exp (-i(xj - Ді)т£111(xj - мО)

= (V2n )V det(£„)

exp (-i(X2 - M2)T^221(X2 - М2))

X (V2n)V det(E22)

This implies independence of X1 and X2. Q. E.D.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.