Introduction to the Mathematical and Statistical Foundations of Econometrics

Distributions of Quadratic Forms of Multivariate Normal Random Variables

As we will see in Section 5.6, quadratic forms of multivariate normal random variables play a key role in statistical testing theory. The two most important results are stated in Theorems 5.9 and 5.10:

Theorem 5.9: Let X be distributed Nn(0, Y), where Y is nonsingular. Then XT£-1 X is distributed as x„.

Proof: Denote Y = (Y1,..., Yn)T = Y- /2X. Then Yis n-variate, standard normally distributed; hence, Y1,...,Yn are independent identically distributed (i. i.d.) N(0, 1), and thus, XT Y-1 X = YTY = Ynj=1 Y2 - x2. Q. E.D.

The next theorem employs the concept of an idempotent matrix. Recall from Appendix I that a square matrix M is idempotent if M2 = M. If M is also sym­metric, we can write M = QA QT, where A is the diagonal matrix of eigenval­ues of M and Q is the corresponding orthogonal matrix of eigenvectors. Then M2 = M implies A2 = A; hence, the eigenvalues of M are either 1 or 0. If all eigenvalues are 1, then A = I; hence, M = I. Thus, the only nonsingular symmetric idempotent matrix is the unit matrix. Consequently, the concept of a symmetric idempotent matrix is only meaningful if the matrix involved is singular.

The rank of a symmetric idempotent matrix M equals the number of nonzero eigenvalues; hence, trace(M) = trace( Q A QT) = trace(A QT Q) = trace(A) = rank(A) = rank(M), where trace(M) is defined as the sum of the diagonal el­ements of M. Note that we have used the property trace(AB) = trace(BA) for conformable matrices A and B.

Theorem 5.10: LetXbe distributed Nn (0, I), and let M be a symmetric idem - potent n x n matrix of constants with rank k. Then XJMX is distributed xf.

Proof: We can write

image334

where Q is the orthogonal matrix of eigenvectors. Because Y = (Y1Yn )T = QTX ~ Nn(0, I), we now have

image335

Q. E.D.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.