Introduction to the Mathematical and Statistical Foundations of Econometrics

Distributions and Transformations

This chapter reviews the most important univariate distributions and shows how to derive their expectations, variances, moment-generating functions (if they exist), and characteristic functions. Many distributions arise as transformations of random variables or vectors. Therefore, the problem of how the distribution of Y = g(X) is related to the distribution of X for a Borel-measure function or mapping g(x) is also addressed.

4.1. Discrete Distributions

In Chapter 1 I introduced three “natural” discrete distributions, namely, the hypergeometric, binomial, and Poisson distributions. The first two are natural in the sense that they arise from the way the random sample involved is drawn, and the last is natural because it is a limit of the binomial distribution. A fourth “natural” discrete distribution I will discuss is the negative binomial distribution.

4.1.1. The Hypergeometric Distribution

Подпись: P (X = k) image194 Подпись: for k = 0, 1, 2,..., min(n, K),

Recall that a random variable Xhas a hypergeometric distribution if

Подпись: (4.1)P(X = k) = 0 elsewhere,

where 0 < n < N and0 < K < N are natural numbers. This distribution arises, for example, if we randomly draw n balls without replacement from a bowl containing K red balls and N — K white balls. The random variable X is then the number of red balls in the sample. In almost all applications of this distribution, n < K, and thus I will focus on that case only.

image197 Подпись: n K !(N - K)! E(k - 1)! (K - k)! (n - k)! (N - K - n + k)! N! k=1 n ! (N - n)!

The moment-generating function involved cannot be simplified further than its definition mH(t) = J2m=o exp(t ■ k)P(X = k), and the same applies to the characteristic function. Therefore, we have to derive the expectation directly:

„ n-1 __________ (K - 1)!((N - 1) - (K - 1))!_______

nK k!((K - 1)-k)!((n - 1) - k)!((N - 1) - (K - 1) - (n - 1) + k)!

N ^ (N - 1)!

image199 Подпись: 1) Подпись: nK ~N

k=0 (n - 1)!((N - 1) - (n - 1))!

Подпись: E [X(X - 1)] Подпись: n(n - 1)K (K - 1) N (N - 1) ’ Подпись: (4.2)

Along similar lines it follows that

Подпись: nK і (n - 1)(K - 1) nK 7 N-1 + -N
Подпись: var(X) = E[X2] - (E[X])2

hence,

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.