Introduction to the Mathematical and Statistical Foundations of Econometrics

Dependent Central Limit Theorems

7.1.4. Introduction

As is true of the conditions for asymptotic normality of M-estimators in the

1.1. d. case (see Chapter 6), the crucial condition for asymptotic normality of the NLLS estimator (7.25) is that

1 n

V (dft(§0)/9§gT) ^Щ0, B], (7.32)

V” t=1

where

B = E [V2 (9f1(§o)/9§oT) (9f (§g)/9§g)] . (7.33)

It follows from (7.21) and (7.26) that

TO

ft (§o) = (во - Yg) £ во -1 Vt - j, (7.34)

j=1

which is measurable ■t-1 = о(Vt-1, Vt-2, Vt-3,...), and thus dft (§o)/9§oT

image561TO TO

E (во + (во - Yo)(j - 1)) в0-2 Vt-j - £ во-1 Vt-j

j=1 j=1

Therefore, it follows from the law of iterated expectations (see Chapter 3) that

Подпись: ( YfU (во + (во - Yb)(j - 1))2во2°' 2) = a4 V- £j=1 (во + (во - Yb)(j - 1)) во20 -2) image563

B = a2E [(Э/НОД/Э^) (9/i(0b)/900)]

and

P (E[Vt(df (во)/дв'^):.-1] = о = 1. (7.36)

The result (7.36) makes Vt(df (0о)/30с[) a bivariate martingale difference process, and for an arbitrary nonrandom f є K2,f = о, the process Ut = Vt f T(9f (во)/дв^) is then a univariate martingale difference process:

Definition 7.4: Let Ut be a time series process defined on a common probability space {^, P}, and let. t be a sequence of sub-a-algebras of.. If for

each t,

(a) Ut is measurable. t,

(b) .-1 c.

(c) E[Ut] < oo, and

(d) P(E[Ut^t-1] = о) = 1,

then {Ut, .t} is called a martingale difference process.

If condition (d) is replaced by P(E[Ut.t-1] = Ut-1) = 1, then {Ut, .t} is called a martingale. In that case AUt = Ut - Ut-1 = Ut - E[Ut.t-1] sat­isfies P(E[AUt.t-1] = о) = 1. This is the reason for calling the process in Definition 7.4 a martingale difference process.

Thus, what we need for proving (7.32) is a martingale difference central limit theorem.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.