Introduction to the Mathematical and Statistical Foundations of Econometrics

Convergence of Characteristic Functions and Distributions

In this appendix I will provide the proof of the univariate version of Theorem 6.22. Let Fn be a sequence of distribution functions on К with corresponding characteristic functions yn (t), and let F be a distribution function on К with characteristic function y(t) = limn—TO^n(t). Let

F(x) = limliminf Fn (x + 8 ), F (x) = lim limsup Fn (x + 8 ).

5^0 n——to 5^0 n — TO

The function F(x) is right continuous and monotonic nondecreasing in x but not necessarily a distribution function itself because limx^TO F(x) may be less than 1 or even 0. On the other hand, it is easy to verify that limx;—TO F(x) = 0. Therefore, if limx—TO F(x) = 1, then F is a distribution function. The same applies to F(x): If limx—TO F(x) = 1, then F is a distribution function.

I will first show that limxF(x) = limx^O F(x) = 1 and then that F(x) =

F(x).

image489 Подпись: (6.74)

Lemma 6.C.1: Let Fn be a sequence of distribution functions on К with corre­sponding characteristic functions pn (t) and suppose that p(t) = limn^Opn (t) pointwise for each t in R where p is continuous in t = 0. Then F(x) = lim5.[0Hminfn^OFn (x + 5) is a distribution function and so is F(x) = Hms.[olimsupn^O Fn (x + 5).

image491 image492

Because |sin(x)/x | < 1 and |Tx | 1 < (2TA) 1 for |x | > 2A it follows from (6.74) that

2A

Подпись: dFn (x) + ' ’ AT = 20 — 2A-t)/

2A

Подпись: fzn([-2A, 2A]) > image495 Подпись: - 1, Подпись: (6.76)

where fzn is the probability measure on the Borel sets in К corresponding to Fn. Hence, if we put T = A-1 it follows from (6.75) that

Подпись: Fn(2A) > Подпись: A Подпись: 1/A j Vn (t)dt 1/ A Подпись: 1 + Fn(-2A) - Fn({-2A}). (6.77)

which can be rewritten as

Подпись: F(2A) > Подпись: A Подпись: 1/A j v(t)dt 1/ A Подпись: 1 + F (-2 A). Подпись: (6.78)

Now let 2A and -2A be continuity points of F. Then it follows from (6.77), the condition that v(t) = limn^x Vn(t) pointwise for each t in R, and the bounded9 convergence theorem that

Because v(0) = 1 and v is continuous in 0 the integral in (6.78) converges to 2 for A ^x.

Moreover, F(-2 A) I 0 if A ^ x. Consequently, it follows from (6.78) that limAxxF(2A) = 1. By the same argument it follows that limAxxF(2A) = 1. Thus, F and F are distribution functions. Q. E.D.

image506

Lemma 6.C.2: Let Fn be a sequence of distribution functions on R such that F(x) = lims.[0 liminfnxx Fn(x + S)and F(x) = lims^0 limsupnxxFn(x + 8) are distribution functions. Then for every bounded continuous function v on R and every є > 0 there exist subsequences nk(є) and n k(є) such that

Proof: Without loss of generality we may assume that v(x) є [0, 1] for all x. For any є > 0 we can choose continuity points a < b of F(x) such that F(b) - F(a) > 1 - є. Moreover, we can choose continuity points a = c1 <

Подпись: 9Note that |v(t)| < 1.

c2 < ••• < cm = b of F(x) such that, for j = - 1,

Подпись: (6.79)sup p(x) - inf p(x) < є.

X G(Cj, cj + 1] xe(cj, Cj+1]

Furthermore, there exists a subsequence nk (possibly depending on є) such that lim F„t(cj) = F(cj) for j = 1, 2,...,m. (6.80)

k^<ro

Now define

f (x) = inf <p(x) for x є (cj, Cj+1], j = 1,...,m - 1,

xє(с/,cj+1]

Подпись: (6.81)f (x) = 0 elsewhere.

image510

Then by (6.79), 0 < p(x) - f (x) < є for x є (a, b] and 0 < p(x) - f (x) < 1 for x Є (a, b]; hence,

Подпись: (6.84)^lim J f (x )dFnt (x) = J f (x )dF(x). Combining (6.82)-(6.84) we find that

Подпись: limsup к^то

image513 Подпись: (6.85)

f p(x)dFnk (x) - / p(x )dF(x)

A similar result holds for the case F. Q. E.D.

Let p*(t) be the characteristic functionof F. Because p (t) = limn—TO pn (t),it follows from Lemma 6.C.2 that for each t and arbitrary є > 0, |p(t) - pjyt)| < є; hence, p(t) = p*(t). The same result holds for the characteristic function p*(t) of F : p(t) = p*(t). Consequently, p(t) = limn—TO pn(t) is the character­istic function of both F and F, whichbyLemma6.C.1 are distribution functions. By the uniqueness of characteristic functions (see Appendix 2.C in Chapter 2) it follows that both distributions are equal: F(x) = F(x) = F(x), for instance. Thus, for each continuity point x of F, F(x) = limn—TOFn(x).

Note that we have not assumed from the outset that p(t) = limn—TOpn (t) is a characteristic function but only that this pointwise limit exists and is continuous in zero. Consequently, the univariate version of the “if” part of Theorem 6.22 can be restated more generally as follows:

Lemma 6.C.1: Let Xn be a sequence of random variables with corresponding characteristic functions pn (t). Ifp(t) = lim pn (t) exists for allt є К and p(t)

n — TO

is continuous int = 0 (i. e., limt—0 p(t) = 1), then

(a) p(t) is a characteristic function itself;

(b) Xn ——dX, where X is a random variable with characteristic function p(t).

This result carries over to the multivariate case, but the proof is rather com­plicated and is therefore omitted. See Section 29 in Billingsley (1986).

image515

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.