Introduction to the Mathematical and Statistical Foundations of Econometrics

Conditional Distributions of Multivariate Normal Random Variables

image321

Let Y be a scalar random variable and X be a k-dimensional random vector. Assume that

where mY = E(Y), mX = E(X), and

£yy = Var(Y), £yx = Cov(Y, X)

= E[(Y - E(Y))(X - E(X))T],

£xy = Cov(X, Y) = E(X - E(X))(Y - E(Y))

= £YX’ £XX = Var(X).

Подпись: —a Подпись: +
image324

To derive the conditional distribution of Y, given X, let U = Y - a - втX, where a is a scalar constant and в is a k x 1 vector of constants such that E(U) = 0 and U and X are independent. It follows from Theorem 5.1 that

Подпись: -a + MY - в тMX  М X 1 -в T( /£YY £ 0 Ik £XY £ Подпись: Nk+1Подпись: 1 -Вт (Ґ 0 Ik ) U1 0ту

-в Ik)_ ■

The variance matrix involved can be rewritten as

Var (U^ — f^YY — £УХв — PT£XY + PT^XXP £YX — вT£XX Vх/ £xy — £ххв £XX

(5.6)

Next, choose в such that U and X are uncorrelated and hence independent. In view of (5.6), a necessary and sufficient condition for that is £XY — £ххв — 0; hence, в — £—X[£XY. Moreover, E(U) — 0 if a — gY — вTgX. Then

£yY — £Yxe — в T£xY + в Т£ххв — £yY — ^YX^XX^XY,

£yx — вT£XX — A, £XY — £ххв — 0,

and consequently

image328Подпись: (5.7)( 0 (£уу — £yx£—X1£xy 0t'

gx) 0 £xx,

Thus, U and X are independent normally distributed, and consequently E(U|X) — E(U) — 0. Because Y — a + вTX + U, we now have E(Y|X) — a + вT (E(X|X)) + E(U|X) — a + вTX. Moreover, it is easy to verify from

(5.6) that the conditional density of Y, given X — x, is

/(y|x) — exp [- 1(y — a — в T x )2/a»],

au*J 2n

where &U — £yy — £yx £xx £xy-

Furthermore, note that aU is just the conditional variance of Y, given X:

al — var(Y|X) — E [(Y — E(Y|X))2|X]. These results are summarized in the following theorem.

Theorem 5.5: Let

image330( My (£yy £yx

gx) ’ V£xy £xxJ J ’

where Y є К, X є Kk, and £хх is nonsingular. Then, conditionally onX, Y is normally distributed with conditional expectation E(Y |X) — a + вTX, where в — £Xy£XY and a — gY — вTgX, and conditional variance var(Y|X) — £yy — £yx£—x£xy.

The result in Theorem 5.5 is the basis for linear regression analysis. Suppose that Y measures an economic activity that is partly caused or influenced by other economic variables measured by the components of the random vector X. In applied economics the relation between Y, called the dependent variable, and the components of X, called the independent variables or the regressors,
is often modeled linearly as Y = a + fTX + U, where a is the intercept, в is the vector of slope parameters (also called regression coefficients), and U is an error term that is usually assumed to be independent of X and normally N(0, a2) distributed. Theorem 5.5 shows that if Y and X are jointly normally distributed, then such a linear relation between Y and X exists.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.