Introduction to the Mathematical and Statistical Foundations of Econometrics

B. Extension of an Outer Measure to a Probability Measure

To use the outer measure as a probability measure for more general sets that those in F0, we have to extend the algebra F0 to a a-algebra F of events for which the outer measure is a probability measure. In this appendix it will be shown how Fcan be constructed via the following lemmas.

Lemma 1.B.1: For any sequence Bn of disjoint sets in ^, P*(U=j Bn) <

£Г=1 p "(Bn).

Proof: Given an arbitrary є > 0 it follows from (1.21) that there exists a countable sequence of sets An, j in F0 such that Bn c An, j and P *(Bn) >

ZjU P(An, j) - є2 n; hence,

CO CO CO CO CO CO

£ P*(Bn) > £ £ P(An, j) - £ £ 2-n = £ £ P(An, j) - є. n=1 n=1 j=1 n=1 n=1 j=1

(1.28)

Moreover, UO=1 Bn c UO=1 UO=1 An, j, where the latter is a countable union of sets in Ж0; hence, it follows from (1.21) that

(

CO CO

и BA <££ P(An, j). (1.29)

n=1 n=1 j=1

If we combine (1.28) and (1.29), it follows that for arbitrary є > 0,

£p*(Bn) > PM u bA - Є. (1.30)

n=1 n=1

Letting є I 0, the lemma follows now from (1.30). Q. E.D.

Thus, for the outer measure to be a probability measure, we have to impose conditions on the collection Ж of subsets of U such that for any sequence Bj of disjoint sets in Ж, P *(Uf=1 Bj) > Yj=1 P * (Bj). The latter is satisfied if we choose Ж as follows:

Lemma 1.B.2: Let Ж be a collection ofsubsets B of U such thatfor any subset A of U:

P*(A) = P*(A П B) + P*(A П B). (1.31)

Then for all countable sequences of disjoint sets Aj є Ж, P *(Uj= 1 Aj) = ГГ=1 P *( Aj).

Proof: Let A = Uj=1 Aj, B = A1. Then A П B = A П A1 = A1 and A П B = Uj=2Aj are disjoint; hence,

P*( Uj=1 Aj) = P*(A) = P*(A П B) + P*(A П B)

= P*(A1) + P*( Uj=2 Aj). (1.32)

If we repeat (1.32) for P *(Uj=kAj) with B = Ak, k = 2,..., n, it follows by induction that

n

P *(U=1 Aj) = £; P *( Aj) + P *(U°=n+1 Aj) j =1

n

>J2 P*(Aj) for all n > 1;

j=1

hence, P*(Uj=1 Aj) > 1 P*(Aj). Q. E.D.

Note that condition (1.31) automatically holds if B є &0: Choose an arbitrary set A and an arbitrary small number є > 0. Then there ex­ists a covering A c U“=1 Aj, where Aj є &0, such that P(Aj) < P*(A) + є. Moreover, because A П B c Ц>=1 Aj П B, where Aj П B є &0, and A П B c U=1 Aj П B, where Aj П B є &0, we have P*(A П B) < Yj= P (Aj П B) and P * (A П B) <Yj=1 P (Aj П B); hence, P *(A П B) + P*(A П B) < P*(A) + є. Because є is arbitrary, it follows now that P*(A) >

P*(A П B) + P*(A П B).

I will show now that

Lemma 1.B.3: The collection & in Lemma 1.B.2 is a a-algebra of subsets of ^ containing the algebra &0.

Proof: First, it follows trivially from (1.31) that B є & implies B є &.Now, let Bj є &. It remains to show that U j= Bj є &, which I will do in two steps. First, I will show that & is an algebra, and then I will use Theorem 1.4 to show that & is also a a-algebra.

(a) Proof that & is an algebra: We have to show that B1, B2 є & implies that B1 U B2 є &. We have

P * (A П BO = P *( A П B1 П B2) + P *( A П B1 П B2),

and because

A П (B1 U B2) = (A П B1) U (A П B2 П B1), we have

P* (A П (B1 U B2)) < P *(A П B1) + P *(A П B2 П Bf.

Thus,

P*(A П (B1 U B2)) + P*(A П B1 П B2) < P*(A П B1)

+ P*(A П B2 П B1) + P*(A П B2 П Bo = P*(A П B1) + P*(A П Bo = P*(A). (1.33)

Because ~(B1 U B2) = B1 П B2 and P*(A) < P*(A П (B1 U B2)) + P*(A П (~(B1 U B2)), it follows now from (1.33) that P*(A) = P *(A П (B1 U B2)) + P *(A П (~(B1 U B2)). Thus, B1, B2 є & implies that B1 U B2 є &; hence, & is an algebra (containing the algebra &0).

(b) Proof that & is a a-algebra: Because we have established that & is an algebra, it follows from Theorem 1.4 that, in proving that & is also a a-algebra, it suffices to verify that U j= Bj є & for disjoint

sets Bj є &. For such sets we have A П (Un=1 Bj) П Bn = A П Bn and A П (Un=1 Bj) П Bn = A П (Un-1 Bj); hence,

P* I A П ( U B

image044 Подпись: (134)

= P * ^A П ^ ^ Bjj П Bnj + P* ^A П ^ ^ Bj ) П Bn = P*(A П Bn) + P* fA П Л-! Bj

Подпись: P*(A П B) < P* A П image047 Подпись: (1.35)

Next, let B = UO 1 Bj. Then B = П° 1Bj С Пп=1Bj = ~(Un=1 Bj); hence,

It follows now from (1.34) and (1.35) that for all n > 1,

Подпись: U Bj j=1 P*(A) = P* |^A П ^ U B^j + P* |^A П

n

> ^ P* (A П Bj) + P*(A П B);

j=1

hence,

P*(A) > ^ P*(A П Bj) + P*(A П B) > P*(A П B) + P*(A П B),

j=1

(1.36)

where the last inequality is due to

(

CO

U (A П Bj)J < ^ P*(A П Bj).

Because we always have P*(A) < P*(A П B) + P*(A П B) (compare Lemma 1.B.1), it follows from (1.36) that, for countable unions B = U^1 Bj of disjoint

sets Bj є

P*(A) = P*(A П B) + P*(A П B);

hence, B є &. Consequently, & is a a-algebra and the outer measure P * is a probability measure on {^, &}. Q. E.D.

Lemma 1.B.4: The a-algebra & in Lemma 1.B.3 can be chosen such that P* is unique: any probability measure P* on {^, &} that coincides with P on &0 is equal to the outer measure P *.

The proof of Lemma 1 .B.4 is too difficult and too long (see Billingsley 1986, Theorems 3.2-3.3) and is therefore omitted.

If we combine Lemmas 1.B.2-1.B.4, Theorem 1.9 follows.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.