Introduction to the Mathematical and Statistical Foundations of Econometrics

Appendix III — A Brief Review of Complex Analysis

III.1. The Complex Number System

Complex numbers have many applications. The complex number system allows computations to be conducted that would be impossible to perform in the real world. In probability and statistics we mainly use complex numbers in dealing with characteristic functions, but in time series analysis complex analysis plays a key role. See for example Fuller (1996).

Complex numbers are actually two-dimensional vectors endowed with arith­metic operations that make them act as numbers. Therefore, complex numbers are introduced here in their “real” form as vectors in K2.

In addition to the usual addition and scalar multiplication operators on the elements of K2 (see Appendix I), we define the vector multiplication operator

image946(III1)

image947

Observe that

image948
image949

Moreover, define the inverse operator “—1” by

image950

and thus

a/c

0

provided that c = 0. Therefore, all the basic arithmetic operations (addition, subtraction, multiplication, division) of the real number system К apply to K^ and vice versa.

In the subspace R = {(0, x)T, x є К} the multiplication operator “ x ” yields

(0) X (0)=(—Г )■

In particular, note that

Подпись: (III4)

image952
Подпись: provided that c2 + d > 0. Note that
Подпись: (III.3)
Подпись: c

01 X 01 = —01

Подпись: def. 1 0 a + і ■ b = I Q I a +1 1 I b, Подпись: where і = Подпись: 0 1 Подпись: (III5)

Now let

Подпись: a + і ■ 0 : Подпись: a Подпись: (III6)

and interpret a + i.0 as the mapping

a ■ c — b ■ d b ■ c + a ■ d = (a ■ c — b ■ d) + i ■ (b ■ c + a ■ d). (Ш.7)

Подпись:Подпись:However, the same result can be obtained by using standard arithmetic opera­tions and treating the identifier i as л/—I:

(a + i ■ b) x (c + i ■ d) = a ■ c + i2 ■ b ■ d + i ■ b ■ c + i ■ a ■ d

= (a ■ c — b ■ d) + i ■ (b ■ c + a ■ d). (III.8)

Подпись: ii Подпись: —I 0 Подпись: = -1 + i ■ 0 ^-1,

In particular, it follows from (Ш.4)-(Ш.6) that

which can also be obtained by standard arithmetic operations with treated i as V—I and i.0 as 0.

Similarly, we have

Подпись: (a + i ■ b)/(c + i ■ d)(a /^c^— 1 fa ■ c + b ■ d

b// d) = c2 + d2b ■ c — a ■ d)

a ■ c + b ■ d b ■ c — a ■ d c2 + d2 + i c2 + d2

provided that c2 + d2 > 0. Again, this result can also be obtained by standard arithmetic operations with i treated as */—I:

Подпись: (a + i ■ b)/(c + i ■ d)a + i ■ b c — i ■ d _

c + i ■ d c — i ■ d (a + i ■ b) x (c — i ■ d)

(c + i ■ d) x (c — i ■ d) a ■ c + b ■ d, b ■ c — a ■ d c2 + d2 + i c2 + d2

image970 Подпись: (III9)

The Euclidean space K2 endowed with the arithmetic operations (III.1)— (Ш.3) resembles a number system except that the “numbers” involved cannot be ordered. However, it is possible to measure the distance between these “num­bers” using the Euclidean norm:

If the “numbers” in this system are denoted by (Ш.5) and standard arithmetic operations are applied with i treated as */—I and i.0 as 0, the results are the
same as for the arithmetic operations (Ш.1), (III.2), and (Ш.3) on the elements of K2. Therefore, we may interpret (III.5) as a number, bearing in mind that this number has two dimensions if b = 0.

From now on I will use the standard notation for multiplication, that is,

(a + i ■ b)(c + і ■ d) instead of (III.8).

The “a” of a + і ■ b is called the real part of the complex number involved, denoted by Re(a + і ■ b) = a, and b is called the imaginary part, denoted by Im(a + і ■ b) = b ■ Moreover, a — і ■ b is called the complex conjugate of a + і ■ b and vice versa. The complex conjugate of z = a + і ■ b is denoted by a bar: z = a — і ■ b. It follows from (III.7) that, for z = a + і ■ b and w = c + і ■ d, zw = z ■ w. Moreover, |z| = fZZ. Finally, the complex number system itself is denoted by C.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.