Introduction to the Mathematical and Statistical Foundations of Econometrics

A.5. Proof of the Wold Decomposition

Let Xt be a zero-mean covariance stationary process and E[X2] = a2. Then the Xt’s are members of the Hilbert space U0 defined in Section 7.A.2. Let S—TO be the subspace spanned by Xt_j, j > 1, and let Xt be the projection of Xt on S——1,. Then Ut = Xt — Xt is orthogonal to all Xt _ j, j > 1, that is, E[UtXt —j] = 0 for j > 1. Because Ut —j є S—TO for j > 1, the Ut’s are also orthogonal to each other: E[UtUt—j] = 0 for j > 1.

Note that, in general, Xt takes the form Xt = fit, jXt—j, where the

coefficients et, j are such that WYt ||2 = E [Yt2] < to. However, because Xt is covariance stationary the coefficients fit, j do not depend on the time index t, for they are the solutions of the normal equations

TO

Y(m) = E[XtXt—m] = J2 вjE[Xt—jX— m]

j=1

TO

= Y! вj Y (j—m), m = 1, 2, 3,....

j=1

Thus, the projections Xt = J2TO=1 ejXt—j are covariance stationary and so are the Ut’s because

a2 = ||Xt ||2 = || Ut + Xt ||2 = || Ut ||2+||Xt ||2 + 2{Ut, Xt)

= II Ut ||2 +||Xt ||2 = E [Uj] + E[X?];

thus, E [U2] = a2 < a2.

Next, let Zt, m = Y."!= 1 ajUt-j, where aj = {Xt, Ut - j > = E[XU-j]. Then

Подпись: IIXt - Zt, Подпись: 2 Подпись: Xt - £ajU-j j=1

2

= E [X?] - ajE[XtUt-j]

j=1

m m [ ] m + E E ai ajE [U Uj ] = E [X2] - E a?2 > 0

i=1 j=1 j=1

for all m > 1; hence, 2^= a1? < to. The latter implies that J]°=m a1? — 0 for m —— to, and thus for fixed t, Zt, m is a Cauchy sequence in S--,, and Xt - Ztm is a Cauchy sequence in S-to. Consequently, Zt =Yj=1 ajUt-j є S--, and Wt = Xt - Ej=i aj Ut-j є S-to exist.

As to the latter, it follows easily from (7.8) that Wt є S-7 for every m; hence,

Wt є П S-to. (7.67)

-TO<t<TO

Consequently, E[Ut +m Wt] = 0 for all integers t and m. Moreover, it follows from (7.67) that the projection of Wt on any S1- is Wt itself; hence, Wt is perfectly predictable from any set {Xt - j, j > 1} of past values of Xt as well as from any set {Wt-j, j > 1} of past values of Wt.

image613

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.