Introduction to the Mathematical and Statistical Foundations of Econometrics

A.2. A Hilbert Space of Random Variables

Let U0 be the vector space of zero-mean random variables with finite second moments defined on a common probability space {&, .^, P} endowed with the innerproduct (X, Y) = E[X ■ Y],norm ||X|| = ^E[X2],andmetric ||X — Y||.

Theorem 7.A.2: The space U0 defined above is a Hilbert space.

Proof: To demonstrate that U0 is a Hilbert space, we need to show that every Cauchy sequence Xn, n > 1, has a limit in U0. Because, by Chebishev’s inequality,

P [|Xn — Xm | > є] < E[(Xn — Xm )2]/є2

= ||X„ — Xm ||2/є2 ^ 0 as n, m ^ то

forevery є > 0, it follows that | Xn — Xmp 0as n, m ^ж. In Appendix 6.B of Chapter 6, we have seen that convergence in probability implies convergence a. s. along a subsequence. Therefore, there exists a subsequence nk such that Xnk — Xnm ^ 0 a. s. as n, m ^ж. The latter implies that there exists a null set N such that for every ш є N, Xnk (ш) is a Cauchy sequence in R; hence,

limk^TOXnt (ш) = X(ш) exists for every ш є ЙN. Now for every fixed m,

(Xnk — Xm)2 ^ (X — Xm)2 a. s. as k ^ж.

By Fatou’s lemma (see Lemma 7.A.1) and the Cauchy property, the latter implies that

IIX — Xm II2 = E [(X — Xm)2]

< liminfE (Xnt — Xm)21 ^ 0 as m ^ж.

k^ж L J

Moreover, it is easy to verify that E[X] = 0 and E[X2] < ж. Thus, every Cauchy sequence in U0 has a limit in U0; hence, U0 is a Hilbert space. Q. E.D.

Lemma 7.A.1: (Fatou’s lemma). Let Xn, n > 1, be a sequence of nonnegative random variables. Then E[liminf „^жXn] < liminf „^жE[Xn].

Proof: Put X = liminf^^,Xn and let ф be a simple function satisfying 0 < q>(x) < x. Moreover, put Yn = min^(X), Xn). Then Yn ^p <p(X) because, for arbitrary є > 0,

P[Yn — v(X) >є] = P[Xn < ф(X) — є] < P[Xn < X — є] ^ 0.

Given that E[<p(X)] < ж because ф is a simple function, and Yn < ф(^), it follows from Yn ^p ф(^) and the dominated convergence theorem that

E[ф(X)] = lim E[Yn] = liminfE[Yn] < liminfE[Xn]. (7.64)

п^ж п^ж п^ж

If we take the supremum over all simple functions ф satisfying 0 < ф(x) < x, it follows now from (7.64) and the definition of E [X] that E [X] < liminfn^ E [Xn ]. Q. E.D.

7.A.3. Projections

As for the Hilbert space Rn, two elements x andy in a Hilbert space H are said to be orthogonal if (x, y) = 0, and orthonormal if, in addition, ||x || = 1 and |y | = 1. Thus, in the Hilbert space U0, two random variables are orthogonal if they are uncorrelated.

Definition 7.A.4: A linear manifold of a real Hilbert space H is a nonempty subset M of H such that for each pair x, y in M and all real numbers a and в, a ■ x + в ■ y e M. The closure M ofM is called a subspace of H. The subspace spanned by a subset C of H is the closure of the intersection of all linear manifolds containing C.

In particular, if S is the subspace spanned by a countable infinite sequence x1, x2, x3,... of vectors in H, then each vector x in S takes the form x = J2T cn ■ xn, where the coefficients cn are such that ||x || < to.

It is not hard to verify that a subspace of a Hilbert space is a Hilbert space itself.

Definition 7.A.5: The projection of an element y in a Hilbert space H on a subspace S of His an element x of S such that || y — x || = minzeS ||y — z||.

For example, if S is a subspace spanned by vectors x1,...,xk in H and y e HS, then the projection ofy on S is a vector x = c1 ■ x1 + ■ ■ ■ + ck ■ xk e S, where the coefficients cj are chosen such that ||y — c1 ■ x1 — ■■■ — ck ■ xk || is minimal. Of course, if y e S, then the projection of y on S is y itself.

Projections always exist and are unique:

Theorem 7.A.3: (Projection theorem) IfS is a subspace of a Hilbert space H andy is a vector in H, then there exists a unique vectorx in Ssuch that ||y — x || = minzeS IIy — z||. Moreover, the residual vector u = y — x is orthogonal to any z in S.

Proof: Let y e HS and infzeS ||y — z|| = 8. By the definition of infimum it is possible to select vectors xn in S such that ||y — xn || <8 + 1/n. The existence of the projection x of y on S then follows by showing that xn is a Cauchy sequence as follows. Observe that

l|x„ — xm II2 = ||(x„ — y) — (x„ — y)II2

= l|x„ — y||2 + ||xm — y||2 — 2(x„ — y, xm — y> and

4||(x„ + xm )/2 — y||2 = ||(x„ — y) + (xm — y )||2

= l|x„ — y ||2 + ||xm — y||2 + 2(x„ — y, xm — y>. Adding these two equations up yields

l|x„ — xm II2 = 2||x„ — y||2 + 2||xffl — y||2 — 4||(x„ + xm)/2 — y||2.

(7.65)

Because (x„ + xm)/2 e S, it follows that ||(x„ + xm)/2 — y |2 > 82; hence, it follows from (7.65) that

| xn — xm | 2 < 2| xn — y| 2 + 2| xm — y| 2 — 482 < 48/n + 1/n2 + 48/m + 1/m2.

Thus, xn is a Cauchy sequence in S, and because S is a Hilbert space itself, xn has a limit x in S.

As to the orthogonality of u = y — x with any vector z in S, note that for every real number c and every z in S, x + c ■ z is a vector in S, and thus

S2 <\y — x — c ■ z\2 = ||u — c ■ z\2

= ІІУ — x ||2 + ||c ■ z||2 — 2{u, c ■ z)

= S2 + c2||z||2 — 2c{u, z). (7.66)

Minimizing the right-hand side of (7.66) to c yields the solution c0 = {u, z)/||z||2, and substituting this solution in (7.66) yields the inequality

({u, z))2/||z||2 < 0. Thus, {u, z) = 0.

Finally, suppose that there exists another vector p in S such that ||y — p|| = S. Then y — p is orthogonal to any vector z in S : {y — p, z) = 0. But x — p is a vector in S, and thus {y — p, x — p) = 0 and {y — x, x — p) = 0; hence, 0 = {y — p, x — p) — {y — x, x — p) = {x — p, x — p) = \x — p||2. There­fore, p = x. Q. E.D.

Добавить комментарий

Introduction to the Mathematical and Statistical Foundations of Econometrics

Mathematical Expectation

With these new integrals introduced, we can now answer the second question stated at the end of the introduction: How do we define the mathematical ex­pectation if the distribution of …

Hypotheses Testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First, consider the problem of whether a particular component of the vector Xj of explanatory variables in model …

The Inverse and Transpose of a Matrix

I will now address the question of whether, for a given m x n matrix A, there exists an n x m matrix B such that, with y = Ax, …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.