INTRODUCTION TO STATISTICS AND ECONOMETRICS

DEFINITION OF BASIC TERMS

Matrix. A matrix, here denoted by a boldface capital letter, is a rectan­gular array of real numbers arranged as follows:

A matrix such as A in (11.1.1), which has n rows and m columns, is called an n X m (read “n by m”) matrix. Matrix A may also be denoted by the symbol {fly}, indicating that its i, jth element (the element in the ith row and jth column) is aly

Transpose. Let A be as in (11.1.1). Then the transpose of A, denoted by A', is defined as an и X и matrix whose i, jth element is equal to a]r For example,

1 Подпись: 1 2 3 4 5 64 '

2 5

3 6

Note that the transpose of a matrix is obtained by rewriting its columns as rows.

Square matrix. A matrix which has the same number of rows and col­umns is called a square matrix. Thus, A in (11.1.1) is a square matrix if

n = m.

Symmetric matrix. If a square matrix A is the same as its transpose, A is called a symmetric matrix. In other words, a square matrix A is symmetric if A' = A. For example,

1 4 6 4 2 5 6 5 3

is a symmetric matrix.

Vector. An n X 1 matrix is called an n-component column vector, and a 1 X n matrix is called an n-component row vector. (A vector will be denoted by a boldface lowercase letter.) If b is a column vector, b' (trans­pose of b) is a row vector. Normally, a vector with a prime (transpose sign) means a row vector and a vector without a prime signifies a column vector.

Diagonal matrix. Let A be as in (11.1.1) and suppose that n = m (square matrix). Elements au, a^, . . . , ann are called diagonal elements. The other elements are off-diagonal elements. A square matrix whose off-di­agonal elements are all zero is called a diagonal matrix.

Identity matrix. An n X n diagonal matrix whose diagonal elements are all ones is called the identity matrix of size n and is denoted by In. Sometimes it is more simply written as I, if the size of the matrix is apparent from the context.

Добавить комментарий

INTRODUCTION TO STATISTICS AND ECONOMETRICS

EXAMPLES OF HYPOTHESIS TESTS

In the preceding sections we have studied the theory of hypothesis testing. In this section we shall apply it to various practical problems. EXAMPLE 9.6.1 (mean of binomial) It is …

Multinomial Model

We illustrate the multinomial model by considering the case of three alternatives, which for convenience we associate with three integers 1, 2, and 3. One example of the three-response model …

Tests for Structural Change

Suppose we have two regression regimes (10.3.7) and Уь = a + 3i*T + ut, t= 1, 2, . . ■ • ,Ti (10.3.8) Tit = a + 32*21 + …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: inna@msd.com.ua