Handbook of Modern Coating Technologies

Application of nano- and microprobes for the analysis of nanomaterials and nanocomposites, including nitrides of high-entropy alloys

Many studies have shown the successful use of modern micro- and nanoprobes for analyzing diffusion segregation processes. Table 5.4 contains the most promising results of studies of nanomaterials and nanocomposites using proton microwaves for analysis using RBS, PIXE, etc., and positron beam microprobe.
Some of the studies mentioned in Table 5.4 have important scientific results and, there-fore, should be considered in greater detail.
In studies [134,203] it was shown that irradiation of a-Fe samples by a high-current elec-tron beam resulted in the formation of local regions with lowered electron density, aggre-gates of interstitial carbon atoms, vacancies, and their agglomerations (see Figs. 5—25 and
5— 26). Subsequent irradiation of these samples gave rise to the formation of "craters” and thereby markedly altered the morphology of polished samples ([134,203] and Fig. 5—26).
Another example of the successful application of nano- and microprobes is provided in a series of publications where seven methods were used to analyze the fatigue strength at the subatomic level in the course of studying the formation of dark spots [118,216,217], slip bands, and speeding up chemical reactions in nanobulk materials (steel), which are accom-panied by the appearance of high-temperature local regions [218—223].
Worthy of note is the contribution of Russian researchers, both theorists and experimen-talists, to the development of near-field microwave diagnostics of ferrites and superconduct-ing ceramics [224—226].
Microwave diagnostics is successfully used to detect tumors and biological objects [227] and to increase the probing depth up to a few millimeters or centimeters and the probing area up to square millimeters or centimeters. In such cases, the point is visualization of an object rather than nanodefects, individual cells, or microcircuits, that is, the depth and the area of analysis increase at the expense of object size resolution, which decreases from nan-ometers to millimeters or centimeters [228].
Table 5.4 Brief summary of nanomaterials and nanocomposites investigated by nano- and microprobes.
Positron beam
Material Method Parameters energy Properties References
a-Fe HCEB • E 5 6-20 keV W5 2.3-5.2 H V 5 69-106 [134,203]

• T 5 0.75 p,s J/cm2 kg/mm2
• p5100-1000
A/cm2
a-Fe HCEB • E5 6-20 keV W5 2.5-5.2 [47]

• T 5 0.8 p,s J/cm2
• p5100-1000
A/cm2
Ta-Fe and HighHCEB • E5 6-20 keV W5 2.3-5.2 H V 5 270-520 [204]

Mo-Fe • T 5 0.75-1.5 ^s J/cm2 kg/mm2
• p5100-1000
A/cm2
Mg and Ti LEHCPEB • E 5 10-40 keV W 5 0.5-40 J/cm2 • wr 5 2-8 X 102 [205]

• T 5 0.5-5 p,s mm3/min
• p5100-1000 • COF 5 0.24-0.27
A/cm2 • cr 5 0.07-0.75 g/cm2 h
Fe-Cr Intense pulsed • E5 14 keV W5 30-53 J/cm2 • HV54400 MPa [206]

electron beam • T 5 450 ^m • wr 5 1.6 X 1026 mm3/Nm
Fe-Cr-C Intense pulsed T 5 50-200 ^s W 5 10-30 J/cm2 [207]

electron beam
TiN HIPIMS • T 5 0.5 p,s — • H 5 34.8-38 GPa [208]

• U5 -400 V • COF 5 0.84-0.97
CrN Pulsed magnetron • P 5 0.3-0.35 mPa — • H 5 20-23 GPa [209]

sputtering • U 5 -90 V • E 5 160-220
Ti-Si-N Pulse high-frequency • I 5 90 A — • H 5 38-39 GPa [210]

sputtering • PN 5 0.3-0.7 Pa • E 5 356 GPa
• Ub 5 -50—200 V • wr 5 1.95-7.69 X 1025 mm3/nm
• COF 5 0.69-0.88
Al-Si-N Closed magnetic field dual • P 5 0-0.5 Pa — • H 5 15-25 GPa [211]

magnetron sputtering • l5 1 A • E 5 230-240 GPa
Ti-Cr-N ICP- assisted magnetron P 5 80 mTorr — H V > 5000 [212]

sputtering
Ti-Hf-Si-N Pulse high-frequency • PN 5 0.3-0.7 Pa W5 1-20 keV • H 5 37.4-48.6 GPa [213]

sputtering • Ub 5 -100—200 V • COF 5 0.12-0.6
Ti-Al-Si-N MPPMS • T 5 1000 p,s — • H 5 23.6-31.3 GPa [214]

• lp 5 62.2-138.2 A • H/E 5 0.079-0.091
• Vp 5 401-408 V • We 5 50.1%-57.4%
(Ti-Hf-Zr- Pulse high-frequency • PN 5 0.08-0.3 Pa — • COF 5 0.22-1.03 [215]

V-Nb)N sputtering • Ub 5 -40 200 V • wr 5 0.027 X 1025 mm3/Hmm
HCEB, High-current electron beam; HIPIMS, high power impulse magnetron sputtering; ICP, inductively coupled plasma; LEHCPEB, low-energy high- current pulsed electron beam; MPPMS, modulated pulsed power magnetron sputtering.

x 103

FIGURE 5-25 (Color image online.) Distribution of elements over a-Fe sample surface obtained with a microprobe (PIXE and RBS): (A) after irradiation by an electron beam (10 pulses), (B) the initial surface prior to irradiation, and (C) separated electron-irradiated region [47]. PIXE, Particle-induced X-ray emission; RBS, Rutherford backscattering.

The present review does not pretend to be a comprehensive description of new, promis-ing methods; their characteristics can be found in numerous papers and monographs. Our aim was to demonstrate the successful application of micro- and nanoprobes for diagnostics of materials at the subatomic level, bearing in mind that most of the relevant information is available only to researchers working in this specific field. The data included in the review may be of value for specialists interested in the analysis and development of new nanocom-posites, nanoconsolidates, and nanopolymers, as well as for those engaged in medico- biological research at the subatomic level. It is safe to predict the further development and application of analytic techniques, which promote the introduction of novel materials based on the better understanding of subatomic processes in them.
Fig. 5—27 shows the results of an elementary analysis obtained using the method of EDS and RBS. From Fig. 5—27A, the following distribution of concentrations can be seen: CTi« 55—60 at.%, CSi ^ 5 at.%, and CN « 35—40 at.%. Fig. 5—27B shows the distribution of element concentrations in this form: CTi« 44 at.%, CSi« 5.5 at.%, and CN « 50 at.%.
Based on the RBS data, the coating thickness was found to be 2.18 6 0.01 pm. EDS results (see Fig. 5—27C) confirm the RBS data. In the coating, the concentration of the elements has the following values: CTi« 40.69 at.%, CSi ^ 2.62 at.%, and CN « 55.92 at.%. Using XPS analysis, a Si—Nx bond was studied for another series of samples (with CSi $ 5.8 at.%). The results of the study showed the formation of the Si—Nx bond in this sample (this is indicated by a high peak at 101.9 eV). Also this study showed the presence of a small amount of Si—O (peak at 103.9 eV) as a result of annealing at 600°C for 30 min in air. The formation of SiN at the boundaries of TiN nanograins showed additional studies using the p-PIXE method.
(A) Positron penetration depth (pm)
0 0.02 0.24 0.46 0.74

(B) Positron penetration depth (pm)
0 0.08 0.26 0.49 0.78

FIGURE 5-26 (A) Ion backscattering (RBS) spectra obtained with the use of a microprobe from coarse-grained a-Fe-samples (grain size 2-3 mm): 1—before irradiation, 2—irradiation by an electron beam with an energy density of 2.5 J/cm2, 3—irradiation by a high-current beam, 3.5 J/cm2, and 4—irradiation by a high-current beam, 5.5 J/cm2. (B) Depth distribution of vacancy defects obtained using a slow beam of positrons implanted into a-Fe (positron microprobe) after irradiation by a high-current electron beam of different densities: 1—before irradiation (grains larger than 3 mm), 2-2.5, 3-3.5, 4-4.5, 5-5.2, and 6-5.5 J/cm2 [47]. RBS, Rutherford backscattering.

Fig. 5-28 shows the surface images of the coating before and after annealing for 30 min at a temperature of 600°C. Regardless of HF stimulation, flat "drops” of the molten phase can be observed. An analysis of the droplet fractions of which the plasma jet partially consists was not carried out. A round hole was cut through the thickness of the coating to normalize the depth of analysis of the slow positron beam and obtain the real thickness of the Ti-Si-N nanostructured coating. Fig. 5-28C shows that the coating thickness is 2.39 6 0.01 pm. Moreover, for Emax = 20 keV the calculated path of the positrons in the coat¬ing is 2.11 pm. The positron beam does not reach the interface between the substrate and 
FIGURE 5-27 Energy spectra of Ti—Si — N coatings: (A) nitrogen pressure PN 5 0.5 Pa and bias potential Us =-50 V (RBS) (the second curve corresponds to the SiW curve of the standard); (B) PN = 0.7 Pa and Us = -100 V (RBS); and (C) PN = 0.5 Pa and Us =-50 V (EDS) [210]. RBS, Rutherford backscattering. 
N509 SIMS mass spectrum with oxygen flooding 6x10 6 Torr

FIGURE 5-28 Topography of the surface of Ti —Si—N coating: (A) after deposition, (B) after annealing at 600°C, and (C) SEM analysis of the cross section in the shape of a circle prepared by the cutting using ion beam [210]. SEM, Scanning electron microscopic.

the coating even under the condition of the thermalized positrons diffusion (its length is ~100 nm). Therefore information on vacancy defects over the entire thickness of the Ti—Si—N coating is provided by profiles of the average penetration depth of the positron, although the interface between them is not reached.
In nanocrystalline materials, the method of the positron annihilation is one of the most reliable and effective techniques for analyzing free volumes (the defect analysis interval is in the range of 10_6/10_3 defects per atom) [215,229].
At the interface of three neighboring nanocrystals or at the interface between two adja¬cent nanograins, a part of positrons can be captured. Since the volume (length) of such boundaries affects the properties of nanocomposite coatings, this allows understanding the interface structure between nanograins, which is one of the most complex and interesting problems of nanomaterials [47,230—237].
The energy dependence of the S parameter is shown in Fig. 5—29. That is, in the Ti—Si—N coating, defect profiles are visible before (black and red curves are the defect pro-files prior and after thermal annealing for 30 min at 600°C, respectively). Considerable changes can be observed in the defective and electronic structure (Fig. 5—29). It is important that, at defects located at the nanograin boundaries, all positrons are localized and annihi-late, and that the concentration of defects increases over the entire thickness of the coating. The nanograin size is 12.8 6 0.3 nm, and the diffusion depth of thermalized positrons is « 100 nm;therefore, almost all positrons are captured at interface defects.
Approaching the interface between the coating and substrate, the S-parameter signifi-cantly increases, that is, defects also migrate to the interface between the coating and sub-strate due to thermal diffusion. The thickness of this transition layer of defects is no more than 250 nm. Calculation of vacancy defect concentration was done using the positron capture model with two types of vacancy defects [237], and it showed that defect concen-tration increases after annealing from 5 X1016 to 7.5 X 1017/cm3, increase in the
N509 GDMS depth profile analysis

Time (s) Time (s)
FIGURE 5-29 Energy dependence of the positron S-parameter microbeam (deposited coating is a black curve; annealed coating is a red curve) [210].

FIGURE 5-30 SIMS analysis data for the first series of Ti—Hf—Si — N samples (element concentration profiles in the coating). High concentration of Fe is observed in the substrate material (steel) [213]. SIMS, Secondary-ion mass spectrometry.

concentration of the thermally activated vacancies from 1 X 1016 to 5 X 1018/cm3 is also observed (red curve).
The advantage of this method is that it is nondestructive. A more sensitive analysis method is SIMS (detection accuracy is ~10—6 at.%) (Fig. 5—30). Therefore the comparison of the results collected by the RBS, SIMS, and GDMS methods gives a more realistic map of the distribution of the elemental composition through the thickness of the coating. This made it possible to determine the concentrations of uncontrolled carbon and oxygen impurities com-ing from the residual atmosphere of the chamber working medium and to analyze the film composition from the film-substrate interface to the surface of the film.
The energy dispersion spectra of the Ti—Hf—Si—N coating (series 1) are shown in Fig. 5—31A and B. Integral information from a 2 X 2 mm2 area is shown in Fig. 5—31A, and local analysis information is shown in Fig. 5—31B. The distribution of elements along the coating depth is uniform, since there is no particular difference between the spectra.
The relationship between S-parameters and the incident positron microbeam energy is shown in Fig. 5—32. According to stoichiometry (content) of elements and phase composi-tion, the significant differences in the depth profiles of vacancy defects in the coatings (series 2 [a] and series 3 [b]) are observed (Fig. 5—33). The curve behaviors differ drastically. For samples of series 2, a two-phase system is formed consisting of (Ti, Hi) N and a-Si3N4. It is characterized by the formation of two peaks (an increase in the S parameter) in the region of 20 keV (near the coating—substrate interface) and in the region of 10 keV. In the case of a series of samples 3, the S parameter is quite large for a single-phase (Ti, Hf) N solid solution, and is —0.492, and at the film—substrate interface it is 0.476 [238—241].
In the jet regime of a plasma flow without separation, non-textured polycrystalline coat-ings with a sufficiently high relative peak intensity are formed as shown in Fig. 5—33.
The deposited coatings had different textures during beam separation. A texture was obtained with [110] when a low bias potential (—100 V) was established on the substrate. Thus the structure of the coating consists of nontextured and textured crystallites. The volu-metric content of non-textured crystallites is ~60% of the total, and the lattice constant in comparison with textured crystallites is reduced. An uneven distribution of Hf atoms in the coating may be the most likely reason for the increase in the lattice constant of textured crys-tallites. Moreover, in the direction perpendicular to the growing surface, texturing results in the increase in the average crystallite size. So, the average size in the fraction of textured crystallites is 10.6 nm, and the size in the fraction of nontextured crystallites is much lower and is 6.7 nm. This type of coating has maximum values of nanohardness. In the case of using a separation scheme and increasing the voltage up to — 200 V during deposition, the formation of the coatings with an average crystallite size of ~5.0 nm and less than 20 vol.% fraction of textured crystallites is observed. The texture is formed in the [001] direction. Accelerating voltage (energy of the plasma stream) increases from —100 to —200 V during the formation of the textured fractions with the same spatial period. However, the lattice parameter in this case is 0.4337 nm and exceeds the non-textured fraction period, which can be obtained by applying to the substrate a low potential. According to the Vegard's rule for solid solutions, this period matches Hf concentration in the solid metal solution (Hf, Ti) of
(A) Energy (keV)
500 1000

(B) Depth (nm)
5 50 150 300 500 1000

FIGURE 5-31 Energy dispersive spectra from series 1 of Ti—Hf—Si — N coatings: (A) integrated information from the 2 x 2 mm2 region and (B) analysis from the local places [213].

~33 at.% [the following values of parameters were used for calculation: aHfN = 0.452534 nm (JCPDS 33—0592) and aTiN = 0, 424173 nm (JCPDS 38—1420)] [233,242].
The maps in element contrast obtained using the EDS shown in Fig. 5—34A indicate the distribution of the elements of (Ti—Hf—Zr—V—Nb)N coatings. The scan area of EDS analysis 
is 0.1 X 10 mm2. The concentration of elements in the sample is defined by color intensity. The droplet fraction appeared during the deposition process is seen on the surface of the coatings as dark round shaped spots. The results of EDS microanalysis of the as-deposited coatings obtained under different deposition conditions is presented in Fig. 5—34B and C, 

FIGURE 5-33 Images of structure areas of nanocomposite Ti—Hf—Si—N coating, obtained by TEM JEOL 2010 F: (A) structure of surface and (B) dark-field image of the nanograin structure [213]. TEM, Transmission electron microscope.

FIGURE 5-34 Results of EDS microanalysis of (Ti—Hf—Zr—V—Nb)N coatings: (A) elemental mapping at coating's surface; (B) EDS spectrum of the coating obtained at Ub =-100 V and PN = 2 x 10-0; (C) EDS spectrum of the coating obtained at Ub = -200 V and PN = 3 x 10-0; and (D) EDS spectrum of the sample at 873K [215].

while EDS microanalysis of the annealed sample at 873K during 30 min (the pressure in the chamber was 100 Pa) is shown in Fig. 5—34D.
According to obtained results the concentration of the constituent elements in experi-mental coatings obtained at gas pressure of 2 X 10-2 Pa in atomic percentage is N = 49.05, Ti = 22.92, V = 5.04, Zr = 6.84, Nb = 7.47, and Hf = 8.68 at pressure 2 X 10-2 Pa. The decrease of the concentration of nitrogen to 36.04 at.% (other elements' concentration are Ti = 20.13 at.%, V = 2.28 at.%, Zr = 17.12 at.%, Nb = 17.50 at.%, and Hf = 6.93 at.%) is observed at pressure lowering to 3 X 10-2 Pa. It indicates a significant nitrogen deficiency in the multicomponent systems obtained at low nitrogen pressure in comparison with coatings of stoichiometric composition.
The results of RBS and EDS analyses shown in Figs. 5—34 and 5—35 designate a notice-ably effect of the radiation factor related to the increase of negative bias potential on

0 100 200 300 400
Time of sputtering (min)
FIGURE 5-35 RBS spectra of (Ti-Hf-Zr-V-Nb)N coatings obtained at: (A) PN 5 8 x 10-0 Pa and Ub 5 -200 V (sample 512) and (B) PN 5 2 x 10-0 Pa and Ub 5-50 V (sample 510) [215]. RBS, Rutherford backscattering.

segregation processes occurring during the deposition process. That is, the contribution of the radiation factor can be enhanced by the energy of ion plasma flux increases due to the increase of the bias potential. There are two required terms that can ensure the formation of a two-phase nanostructured film. The first one is the increased rate of the diffusion of atoms along the grain boundaries. Another is the high temperature of the deposition process (873K) at which the process of spinodal segregation is completed [243-246].
According to the results of EDS microanalysis, ion bombardment (enhanced by increasing the substrate bias) exert the determining influence on the segregation processes while the coating formation. When the energy of ion flux increases, the contribution of ion bombard¬ment enhances, which suggests the increase of radiation-induced defect density [247].
The annealing of (Ti-Hf-Zr-V-Nb)N samples results in the formation of an oxide film on the surface of the coatings, presented by high-intense O peak at EDS spectrum (see Fig. 5-34D). The results of XRD analysis of annealed samples have also confirmed this state¬ment (see Fig. 5-36). The presence of Fe and Cr at EDS spectra occurs due to the diffusion of these elements from the steel substrate. The deviation of the concentration values of 
nitrogen in experimental samples is ~0.26 at.% for coatings with a nitrogen concentration of
49.5 at.% and not more than 0.18 at.% for coatings in which nitrogen concentration is less
36.5 at.%. According to the positron annihilation, the positrons are located well within the following areas of low electron density: vacancy-type defect divacancies, vacancy complexes, conglomerates of various vacancies, and interstitial defects of three or more atoms bonds [237,239,240]. The literature data [246,248—251] reported that in nanostructured materials, deposited using vacuum compaction, the grain boundaries are strong trapping centers for the positrons, which then annihilate with two or three components of the positron lifetime ті, T2, and T3. It is obviously related to positron annihilation at the grain boundaries, that is, the formation of the quasiamorphous phase for our samples.
The results presented at Fig. 5—37A and B clearly indicate that the defect profiles (S- parameter) vary significantly for different deposition conditions (see deposition conditions for samples 510 and 512). The temperature annealing at a high residual pressure of 100 Pa leads to the great changes of S-parameter over the depth of the coating. This way, S-parame- ter for sample 512 reduces from 0.58 to 0.56 (as-deposited) to 0.52 to 0.51 (annealed). However, when analyzing the energy of positrons 12.5—15 keV, it increases to 0.53. 
According to the curve of as-deposited sample 510 (see Fig. 5—37B), the positron-sensitive defects are almost absent within the depth scan line. Thus the positron annihilation has occurred mainly with the electrons from the defect-free areas.
The minimal value of the magnitude of S-parameter is 0.49. The significant increase of the magnitude of S-parameter to 0.53 is registered after thermal annealing of the coating at 
600°С. There is the dependence of S-parameter on the analyzing depth: it increases to the maximal value of 0.59 when the positron energy range changes from 14 to 17 keV [248].
It is important to mention that S-parameter depends on the concentration of vacancy defects at which positrons are captured and then annihilate in the areas of low electron den-sity and their type (dislocation, vacancy, and grain boundary) [246,248,249].
It is known that if the size grains in nanostructured coatings is smaller than the length of diffusion track of positrons in defect-free areas, all positrons can reach the grain surface and consequently their boundaries. Hence, obtained results, in this case, relate to the defects at the boundaries and triple or more bonds. Inasmuch as the grains size of experimental coat-ings changes from 40 to 60 nm, the volume fraction of the interfaces reaches the range of 30—35 vol.%, and the interfaces of triple bonds are ~5—10 vol.%, hence, almost all positrons will be bonded along the interfaces [246].
When the distance between the defects is essentially shorter the positron diffusion length, all positrons will be captured by defects, hence, the capture saturation is observed. The posi-tron lifetime spectrum will contain only one component in this case [246,248] and S-parame- ter of Doppler broadening will reach the maximum value.
The map of the element distribution of (Ti—Zr—Hf—V—Nb)N coating sample 512 (the analyzed area is 2.5 X 2.5 pm2 and scanning step is 0.5 pm) is presented in Fig. 5—38A. It is obvious that constituent elements are spread very evenly over the surface and bulkwise the coating. The thermal treatment of the samples at 873K during 30 min promotes the segrega-tion of impurities at the grain boundaries, which clearly can be observed at presented maps (see Fig. 5—38B). It is worthwhile to pay attention to the fact that almost all constituent ele-ments are detected, and only nitrogen is not revealed at the spectrum since PIXE method is not insensitive enough to light elements. The width of these grains interfaces is ~0.12 6 0.25 pm, and the size of large grains ranges from 0.3 to 0.8 pm. Considering the results obtained by XRD and p-PIXE, it can be concluded that the grains of microsize (0.3—0.8 pm) composed of fragmented nanograins (45—60 nm) are formed in the structure of

FIGURE 5-38 Maps of the element distribution of (Ti—Zr—Hf—V—Nb)N coating (sample 512) before (A) and after (B) thermal treatment. Analyzed area is 2.5 X 2.5 pm2, step size is 0.5 pm [215].

multielement (Ti—Zr—Hf—V— Nb)N coatings. The size of the grains was determined on the basis of XRD results. It is also established that the impurities segregated at the boundaries of large grains due to temperature stimulated diffusion, and result in the formation of the inter¬layer small grains.
According to the results obtained by TEM analysis, the structural phase state of experi-mental coatings, composed by different alloying elements (Si, B, and Al) in the TiN system even at high diffusion mobility of atoms, presented by two-phase textured grains structures. It is also established that grains of a submicron size (0.2—0.6 pm) are fragmented by the low- angle interfaces with the disorientation angles of 5 degrees and by nanograins of 20—30 nm in investigated coatings [252].
According to Fig. 5—38, the elements are distributed almost uniformly over the surface and in-depth of the experimental coatings. The thermal annealing of films at 600°С results in segregation of the impurities at the grain boundaries [247].
The mass spectra for multilayer (Ti-Hf-Zr-V-Nb)N coating (sample 509) obtained by SIMS method is presented in Fig. 5—39. It is obvious that there is a thin oxide film on the surface of the experimental coating. It is presented by ZrO, NbO, HfO, and ZrO2 phases and also contains a high concentration of titanium and vanadium elements.
The spectra (the depth profiles of elements) obtained by GDMS under different etching rates are shown in Fig. 5—40. It is obvious that all profiles have a similar distribution of con-stituent elements as well as the same thickness of the coating layer. However, the depth

Energy (keV)
FIGURE 5-39 SIMS spectra for multilayer (Ti—Hf—Zr—V—Nb)N coating (sample 509) [253]. SIMS, Secondary-ion mass spectrometry.

FIGURE 5-40 GDMS spectra for multilayer (Ti-Hf-Zr-V-Nb)N coating (sample 509) [247].

distribution of Fe and N elements differs due to different etching rates. But the profiles of elements with high concentration are similar. Thus the results obtained by RBS, SIMS, and GDMS give an insight on the element distribution of investigated coatings.
Experimental investigations show that positrons are concentrated in the regions with a low electron density, that is, vacancy-type defects divacancies, vacancies cluster, vacancy complexes with two or three interstitial atoms [246,254,255]. As it follows from literature data [236,249,250], the nanostructured materials deposited using vacuum compaction, act as traps for positrons, with the positron lifetime of т 1, T2, and T3. The positron lifetime т is presented as a function of the electron density at the annihilation size. When positrons are trapped in open-volume defects, the positron lifetime increases and related to the defect-free state of the sample. The intensity of the component with a long lifetime is directly related to the defect concentration. In [251] reported that the lifetime T1 is considered as the lifetime of positrons in vacancies of the grain interfaces, the annihilation of positrons in three-dimensional vacancy agglomerates (nanopores) is characterized by T2 and finally, T3 is pre-senter the large free volume the dimensions of which close to the crystallites size [236].
According to the results of EDS analyze for the sample 510 with lower elastic stress in the initial state than for other samples, two peaks are formed on the curve of S-parameter at the energy of the positron beam of 3/5 and 14/17 keV. This is explained by the intense diffusion process of N and O atoms in the near-surface region for this sample and indicates the forma-tion of new channels for the positrons annihilation, which are more actively pulled to defects at the interface. The new quasi-amorphous nitride phases are formed in this case. This con-clusion is also proved by the results of PIXE-p analysis, according to which, an oxide film has formed on the surface, and caused the increase of S-parameter. It is observed the redistribu¬tion of the elements along the coating depth and signals the end of the spinodal segregation process and the formation of new phases at nanograin interfaces [30-34]. It is worthwhile to note that the mechanism of structural relaxation is occurred due to the growth of the grains
during temperature annealing, and the segregation of nitrogen at the grain boundaries pre-vents the growth of nanosized crystals.
Acknowledgments
The authors are grateful to their colleagues: A.G. Ponomarev, A.P. Shypylenko, O.V. Sobol', A.A. Bagdasaryan, K.V. Smyrnova, et al. for assistance in the collaborative research. This work was supported by the Ukraine's state budget programs: “Implantation of low-energy and high-energy ions into multielement and multilayer coatings: microstructure and properties” (registration number 0119U100787);“Improved physical and mechanical properties multilayer protective coatings based on high-entropy alloy nitrides” (registration num¬ber 0120U100475).
References
[1] M. Vijayakumar, V.V. Rama Rao, P.C. Angelo, Scanning electron probe microanalysis, Def. Sci. J. 39 (1) (1989) 13-32.
[2] S.S. Elovikov, Auger electron spectroscopy, Soros Educ. J. 7 (2) (2001) 82-88 (in Russian).
[3] E. Cadel, A. Fraczkiewicz, D. Blavette, Atomic scale investigation of impurity segregation to crystal defects, Annu. Rev. Mater. Res. 33 (2003) 215-231.
[4] M.F. Chisholm, S.J. Pennycook, Direct imaging of dislocation core structures by Z-contrast STEM,
Philos. Mag. 86 (29-31) (2006) 4699-4725.
[5] V.T. Cherepin, Ion Microprobe Analysis, Naukova Dumka, Kiev, 1992 (in Russian).
[6] S. Reyntjens, R. Puers, A review of focused ion beam applications in microsystem technology,
J. Micromech. Microeng. 11 (4) (2001) 287-300.
[7] F. Watt, G.W. Grime (Eds.), Principles and Applications of High-Energy Microbeams, Adam Hilger, Bristol, 1987.
[8] C.J. Maggiore, Materials analysis with a nuclear microprobe, Scanning Electron. Microsc. 1 (1980) 439-454.
[9] M.B.H. Breese, D.N. Jamieson, P.J.C. King, Materials Analysis Using a Nuclear Microprobe, John Wiley, New York, 1996.
[10] M. Steinbruck, S. Prestel, U. Gerhards, High-temperature interaction of oxygen-preloaded Zr1Nb alloy with nitrogen, Nucl. Eng. Technol. 50 (2) (2018) 237-245.
[11] G.U.L. Nagy, R. Kerekgyarto, A. Csik, L. Daroczi, I. Rajta, Morphological changes of poly(tetrafluoroethy- lene)surface due to low current density proton irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 449 (2019) 71-74.
[12] M. Takai, Applications of nuclear microprobes in the semiconductor industry, Nucl. Instrum. Methods Phys. Res. B 113 (1-4) (1996) 330-335.
[13] J.S. Laird, C.G. Ryan, R. Kirkham, S. Hu, D.P. Siddons, P.A. Dunn, et al., High definition large area map¬ping of geological samples using a MAIA detector array in the nuclear microprobe, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 449 (2019) 11-16.
[14] R.A. Pizarro, M.E. Debray, D. Radiomicrobiologia, Determination of mercury in vegetal tissues by microPIXE: application to the study of hyperaccumulation by spirodela intermedia, Bol. Soc. Argent.
Bot. 54 (2) (2019) 263-276.
[15] R.D. Vis, The Proton Microprobe: Applications in Biomedical Field, CRC Press, Boca Raton, 1985.
[16] G. Muggiolu, M. Simon, N. Lampe, G. Deves, Ph Barberet, C. Michelet, et al., In situ detection and single cell quantification of metal oxide nanoparticles using nuclear microprobe analysis, J. Vis. Exp. 132 (2018) 1-9.
[17] A. Reinert, M. Morawski, J. Seeger, T. Arendt, T. Reinert, Iron concentrations in neurons and glial cells with estimates on ferritin concentrations, BMC Neurosci. 20 (1) (2019) 1-14.
18. G. Demortier, Ion beam studies of archaeological gold jewellery items, Nucl. Instrum. Methods Phys.
Res. B 113 (1-4) (1996) 347-353.
[19] K.G. Malmqvist, Applications of nuclear microprobes in environmental research, Nucl. Instrum.
Methods Phys. Res. B 113 (1-4) (1996) 336-346.
[20] Zs Kertesz, Z. Szikszai, Z. Szoboszlai, A. Simon, R. Huszank, I. Uzonyi, Study of individual atmospheric aerosol particles at the Debrecen ion microprobe, Nucl. Instrum. Methods Phys. Res. B 267 (12-13) (2009) 2236-2240.
[21] J. Meijer, U. Weidenmuller, P. Baving, H. Rocken, A. Stephan, H.H. Bukow, et al., Synthesis of CoSi2- structures using ion microprobes, Nucl. Instrum. Methods Phys. Res. B 161-163 (2000) 898-903.
[22] H. Rocken, J. Meijer, A. Stephan, U. Weidenmuller, H.H. Bukow, C. Rolfs, White electroluminescent nanostructures in silicon fabricated using focused ion implantation, Nucl. Instrum. Methods Phys. Res.
B 181 (1-4) (2001) 274-279.
[23] M. Cutroneo, V. Havranek, L. Torrisi, B. Svecova, Ion micro beam, promising methods for interdisciplin¬ary research, J. Instrum. 11 (5) (2016) 1-9.
[24] A.G. Ponomarev, Application of focusing charged particle beams of low and midle energy in nanotech¬nology (review), Visn. SumDU Ser. Fiz., Mat., Mekh 2 (2008) 46-59 (in Russian).
[25] F. Watt, M.B.H. Breese, A.A. Bettiol, J.A. van Kan, Proton beam writing, Mater. Today 10 (6) (2007) 20-29.
[26] E.J. Teo, M. Liu, M.B.H. Breese, E.P. Tavernier, A.A. Bettiol, D.J. Blackwood, et al., Fabrication of silicon microstructures using a high-energy ion beam, Proc. SPIE: Micromach. Technol. Micro-Optics Nano¬Optics II 5347 (2004) 264-270.
[27] J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - the stopping and range of ions in matter (2010), Nucl. Instrum. Methods Phys. Res. B 268 (11-12) (2010) 1818-1823.
[28] G.J.F. Legge, A history of ion microbeams, Nucl. Instrum. Methods Phys. Res. B 130 (1-4) (1997) 9-19.
[29] A.K. Val'ter (Ed.), Electrostatic Accelerators of Charged Particles, Gosatomizdat, Moscow, 1963.
[30] E.J. Teo, M.B.H. Breese, A.A. Bettiol, F. Watt, L.C. Alves, High quality ion-induced secondary electron imaging for MeV nuclear microprobe applications, J. Vac. Sci. Technol. B 22 (2) (2004)
560-564.
[31] C.N.B. Udalagama, A.A. Bettiol, J.A. van Kan, E.J. Teo, F. Watt, The rapid secondary electron imaging system of the proton beam writer at CIBA, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 390-395.
[32] J.B. Schroeder, C.W. Howell, G.A. Norton, A new 3 MV tandem pelletron system, Nucl. Instrum.
Methods Phys. Res. B 24-25 (1987) 763-766.
[33] J.A. Ferry, Recent developments in electrostatic accelerator technology at NEC, Nucl. Instrum. Methods Phys. Res. A 328 (1-2) (1993) 28-33.
[34] L.L. Gol'din, Physics of Accelerators, Nauka, Moscow, 1983.
[35] D.J.W. Mous, R.G. Haitsma, T. Butz, R.-H. Flagmeyer, D. Lehmann, J. Vogt, The novel ultrastable HVEE 3.5 MV Singletron™ accelerator for nanoprobe applications, Nucl. Instrum. Methods Phys. Res. B 130 (1-4) (1997) 31-36.
[36] S.M. Mordyk, V.I. Voznyy, V.I. Miroshnichenko, A.G. Ponomarev, V.E. Storizhko, High brightness rf ion source for accelerator-based microprobe facilities, Rev. Sci. Instrum. 75 (5) (2004)
1922 1924.
[37] S.M. Mordyk, V.I. Voznyy, V.I. Miroshnichenko, V.E. Storizhko, B. Sulkio-Cleff, D.P. Shulha, Hydrogen/ helium ion injector for accelerator-based microprobe facilities, Nucl. Instrum. Methods Phys. Res. B 231 (1-4) (2005) 37-42.
[38] V. Miroshnichenko, S. Mordyk, D. Shulha, V. Storizhko, V. Voznyy, Development of the RF ion source for use in accelerator-based microprobes, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 39-44.
[39] J. Adamczewski, D. Loffelmacher, J. Meijer, A. Stephan, H.H. Bukow, C. Rolfs, Layout of a nuclear micro¬probe beamline using a liquid metal ion source, Nucl. Instrum. Methods Phys. Res. B 130 (1-4) (1997) 57-63.
[40] S. Kalbitzer, Bright ion beams for the nuclear microprobe, Nucl. Instrum. Methods Phys. Res. B 158 (1-4) (1999) 53-60.
[41] G.L. Allan, G.J.F. Legge, J. Zhu, Characteristics of a hydrogen gas field ion source for muprobe applica¬tion, Nucl. Instrum. Methods Phys. Res. B 34 (1) (1988) 122-126.
[42] G.J.F. Legge, G.R. Moloney, R.A. Colman, G.L. Allan, High velocity ion microprobes and their source requirements, Rev. Sci. Instrum. 67 (3) (1996) 909-914.
[43] R.A. Colman, G.J.F. Legge, An investigation of the optics of an accelerating column for use with a high brightness ion source and a proton microprobe, Nucl. Instrum. Methods Phys. Res. B 73 (4) (1993) 561-569.
[44] R.D. Vis, A.J.J. Bos, F. Ullings, J.P.W. Houtman, H. Verheul, On the proton microbeam of the Vrije Universiteit, Amsterdam, and its applications, Nucl. Instrum. Methods Phys. Res. B 197 (1) (1982) 179-184.
[45] S. Kurashima, N. Miyawaki, S. Okumura, M. Oikawa, Ken-ichi Yoshida, T. Kamiya, et al., Improvement in beam quality of the JAEA AVF cyclotron for focusing heavy-ion beams with energies of hundreds of MeV, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 65-70.
[46] S. Kurashima, Ken-ichi Yoshida, M. Oikawa, T. Satoh, N. Miyawaki, T. Yuyama, et al., Quick change of ion species of heavy-ion microbeam by cocktail beam acceleration technique with the JAEA AVF cyclo¬tron, Nucl. Instrum. Methods Phys. Res. B 267 (12-13) (2009) 2024-2027.
[47] A.D. Pogrebnjak, A.G. Ponomarev, A.P. Shpak, Yu.A. Kunitskii, Application of micro- and nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects, Physics-Uspekhi 182 (3) 287-321 (in Russian).
[48] T.B. Pierce, P.F. Peck, D.R.A. Cuff, Examination of surfaces by scanning with charged particles, Nature 211 (5044) (1966) 66-67.
[49] B.W. Mak, J.R. Bird, T.M. Sabine, Proton microanalysis, Nature 211 (5050) (1966) 738-739.
[50] C.J. Maggiore, The Los Alamos nuclear microprobe with a superconducting solenoid final lens, Nucl. Instrum. Methods Phys. Res. B 191 (1-3) (1981) 199-203.
[51] J. Meijer, A. Stephan, J. Adamczewski, H. Rocken, H.H. Bukow, C. Rolfs, Superconducting microprobe at Bochum, Nucl. Instrum. Methods Phys. Res. B 99 (1-4) (1995) 423-426.
[52] A. Stephan, J. Meijer, J. Adamczewski, H. Rocken, D. Loffelmacher, H.H. Bukow, et al., Investigation of the resolution affecting parameters of a nuclear microprobe using a solenoid lens, Nucl. Instrum. Methods Phys. Res. B 113 (1-4) (1996) 387-390.
[53] P.W. Hawkes, Quadrupoles in Electron Lens Design, Academic Press, New York, 1970.
[54] S.Ya. Yavor, Focusing Charged Particles with Quadrupole Lenses, Atomizdat, Moscow, 1968.
[55] A.D. Dymnikov, S.Ya Yavor, Quadrupole lenses analogous to an axially symmetric system, Tech. Phys.
33 (1963) 7851. in Russian.
[56] A.D. Dymnikov, T.Y. Fishkova, S.Y. Yavor, Effect of geometrical parameters on optical characteristics of a system of 4 quadrupole lenses similar to an axisymmetric lens, Technical Phys. 35 (1965) 431-440. in Russian.
[57] J.A. Cookson, A.T.G. Ferguson, F.D.J. Pilling, Proton microbeams, their production and use, Radioanal. Chem. 12 (2) (1972) 39-52.
[58] A.I. Ryabchikov, A.G. Puzyrevic, Nuclear microprobe, Instrum. Exp. Tech. 33 (5) (1990) 1203-1205.
[59] V.N. Bondarenko, A.V. Goncharov, V.Ya. Kolot, Development of NSC KIPT nuclear microprobe, Vopr. Atom. Nauki Tekh. Yad.-Fiz. Issled. 8 (4) (1999) 98101. in Russian.
[60] A.G. Ponomarev, V.A. Rebrov, N.A Sayko, A.B. Dudnik, P.A. Pavlenko, A.A. Drozdenko, et al., Proton scanning microprobe with integrated probeforming system, Appl. Phys. 2 (2008) 28-33.
[61] D.V. Magilin, A.G. Ponomarev, V.A. Rebrov, N.A. Sayko, K.I. Melnik, V.I. Miroshnichenko, et al., Performance of the Sumy nuclear microprobe with the integrated probe-forming system, Nucl. Instrum. Methods Phys. Res. B 267 (12-13) (2009) 2046-2049.
[62] V.A. Rebrov, A.G. Ponomarev, V.K. Palchik, N.G. Melnik, The new design of magnetic quadrupole lens doublet manufactured from a single piece, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 34-38.
[63] A.G. Ponomarev, V.A. Rebrov, S.V. Kolinko, A.S. Lapin, V.F. Salivon, A.A. Ponomarov, The new Sumy nuclear microprobe with single-stage quintuplet lens system, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 456 (2019) 21-25.
[64] A.G. Ponomarev, V.I. Miroshnichenko, V.E. Storizhko, Optimum collimator shape and maximum emit- tance for submicron focusing of ion beams. Determination of probe-forming system resolution. limit, Nucl. Instrum. Methods Phys. Res. A 506 (1-2) (2003) 20-25.
[65] S. Matsuyama, K. Ishii, H. Yamazaki, Y. Kikuchi, K. Inomata, Y. Watanabe, et al., Progress and applica¬tion of the Tohoku microbeam system, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 55-64.
[66] G.W. Grime, F. Watt, Beam Optics of Quadrupole Probe-Forming Systems, Adam Hilger, Bristol, 1984.
[67] F. Watt, J.A. van Kan, I. Rajta, A.A. Bettiol, T.F. Choo, M.B.H. Breese, et al., The National University of Singapore high energy ion nano-probe facility: performance tests, Nucl. Instrum. Methods Phys. Res. B 210 (2003) 14-20.
[68] V. Brazhnik, A. Dymnikov, R. Hellborg, S. Lebed, J. Pallon, V. Storizhko, The effect of lens arrangement in a triplet and in a Russian quadruplet on the demagnification and beam current in a microprobe, Nucl. Instrum. Methods Phys. Res. B 77 (1-4) (1993) 29 -34.
[69] V.A. Brazhnik, A.D. Dymnikov, D.N. Jamieson, S.A. Lebed, G.J.F. Legge, A.G. Ponomarev, et al., Numerical optimization of magnetic nonlinear quadrupole systems in an ion microprobe with given spot size on the target, Nucl. Instrum. Methods Phys. Res. B 104 (1-4) (1995) 92-94.
[70] G.R. Moloney, D.N. Jamieson, G.J.F. Legge, Ion-optical review of the new Melbourne two-stage micro¬probe, Nucl. Instrum. Methods Phys. Res. B 54 (1-3) (1991) 68-70.
[71] A.D. Dymnikov, D.N. Jamieson, G.J.F. Legge, Optimal non-linear, orthomorphic, magnetic quadrupole lens systems for ion microprobes, Nucl. Instrum. Methods Phys. Res. B 104 (1-4) (1995) 64-68.
[72] T. Butz, G.J.F. Legge, From micro- to nanoprobes: auspices and horizons, Nucl. Instrum. Methods Phys. Res. B 113 (1-4) (1996) 317-322.
[73] T. Butz, R.-H. Flagmeyer, J. Heitmann, D.N. Jamieson, G.J.F. Legge, D. Lehmann, et al., The Leipzig high-energy ion nanoprobe: a report on first results, Nucl. Instrum. Methods Phys. Res. B 161-163 (2000) 323-327.
[74] C.G. Ryan, D.N. Jamieson, W.L. Griffin, G. Cripps, The CSIRO-GEMOC nuclear microprobe: a high- performance system based on a new closely integrated design, Nucl. Instrum. Methods Phys. Res. B 158 (1-4) (1999) 18-23.
[75] C.G. Ryan, D.N. Jamieson, A high performance quadrupole quintuplet lens system for the CSIRO-GEMOC nuclear microprobe, Nucl. Instrum. Methods Phys. Res. B 158 (1-4) (1999) 97-106.
[76] M.B.H. Breese, G.W. Grime, W. Linford, M. Harold, An extended magnetic quadrupole lens for a high- resolution nuclear microprobe, Nucl. Instrum. Methods Phys. Res. B 158 (1-4) (1999) 48-52.
[77] C.G. Ryan, D.N. Jamieson, W.L. Griffin, G. Cripps, R. Szymanski, The new CSIRO—GEMOC nuclear microprobe: first results, performance and recent applications, Nucl. Instrum. Methods Phys. Res. B 181 (1—4) (2001) 12—19.
[78] G. Datzmann, G. Dollinger, G. Hinderer, H.-J. Korner, A superconducting multipole lens for focusing high energy ions, Nucl. Instrum. Methods Phys. Res. B 158 (1—4) (1999) 74—80.
[79] G.A. Glass, B. Rout, A.D. Dymnikov, E.V. Eschenazi, R. Greco, D.P. Zachry, High energy focused ion beam nanoprobes: design and applications, MRS Proc. 908 (2005). Available from: https://doi.org/ 10.1557/PROC-0908-OO06-01.
[80] S.A.E. Johansson, J.L. Campbell, K.G. Malmqist (Eds.), Particle-Induced X-Ray Emission Spectrometry (PIXE), John Wiley, New York, 1995.
[81] S.A.E. Johansson, J.L. Campbell, PIXE: a Novel Technique for Elemental Analysis, John Wiley, New York, 1988.
[82] T. Andrea, M. Rothermel, R. Werner, T. Butz, T. Reinert, Limited angle STIM and PIXE tomography of single cells, Nucl. Instrum. Methods Phys. Res. B 268 (11—12) (2010) 1884—1888.
[83] Intercomparison of PIXE Spectrometry Software Packages, IAEA-TECDOC-1342, International Atomic Energy Agency, Vienna, 2003.
[84] C.G. Ryan, D.P. Siddons, G. Moorhead, R. Kirkham, P.A. Dunn, A. Dragone, et al., Large detector array and real-time processing and elemental image projection of X-ray and proton microprobe fluorescence data, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 1—7.
[85] C.G. Ryan, R. Kirkham, D.P. Siddons, P.A. Dunn, J.S. Laird, A. Kuczewski, et al., The Maia 384 detector array in a nuclear microprobe: a platform for high definition PIXE elemental imagin, Nucl. Instrum. Methods Phys. Res. B 268 (11—12) (2010) 1899—1902.
[86] F. Watt, M.Q. Ren, J.P. Xie, B.K.H. Tan, B. Halliwell, Nuclear microscopy of atherosclerotic tissue: a review, Nucl. Instrum. Methods Phys. Res. B 181 (1—4) (2001) 431—436.
[87] N. Barapatre, M. Morawski, T. Butz, T. Reinert, Trace element mapping in Parkinsonian brain by quanti¬tative ion beam microscopy, Nucl. Instrum. Methods Phys. Res. B 268 (11—12) (2010) 2156—2159.
[88] E.T. Shipatov, Backscattering of Fast Ions: Theory, Experiment, Practice, Izd. Rostovskogo Univ., Rostov- on-Don, 1988.
[89] J.R. Tesmer, M. Nastasi (Eds.), Handbook of Modern Ion Beam Materials Analysis, Materials Research Society, Pittsburgh, 1995.
[90] S.L. Molodtsov, A.F. Gurbich, C. Jeynes, Accurate ion beam analysis in the presence of surface rough-ness, J. Phys. D 41 (20) (2008). 205303 (7pp).
[91] N.P. Barradas, K. Arstila, G. Battistig, M. Bianconi, N. Dytlewski, C. Jeynes, et al., Summary of “IAEA intercomparison of IBA software”, Nucl. Instrum. Methods Phys. Res. B 266 (8) (2008) 1338—1342.
[92] R. Samlenski, Ch. Haug, R. Delto, Ch. Wild, R. Brenn, Micro-ERDA studies of hydrogen in polycrystalline CVD diamond windows, Nucl. Instrum. Methods Phys. Res. B 190 (1—4) (2002) 324—328.
[93] Y. Llabador, Ph. Moretto, H. Guegan, Light-element analysis with the CENBG nuclear microprobe, Nucl. Instrum. Methods Phys. Res. B 77 (1—4) (1993) 123—127.
[94] K.A. Sjoland, P. Kristiansson, M. Elfman, K.G. Malmqvist, J. Pallon, R.J. Utui, et al., The new nuclear reaction analysis facility at the Lund Nuclear Microprobe, Nucl. Instrum. Methods Phys. Res. B 130 (1—4) (1997) 20—24.
[95] M.B.H. Breese, E. Vittone, G. Vizkelethy, P.J. Sellin, A review of ion beam induced charge microscopy, Nucl. Instrum. Methods Phys. Res. B 264 (2) (2007) 345—360.
[96] G. Vizkelethy, R.A. Reed, P.W. Marshall, J.A. Pellish, Ion beam induced charge (IBIC) studies of silicon germanium heterojunction bipolar transistors (HBTs), Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 264—269.
[97] E. Colombo, A. Bosio, S. Calusi, L. Giuntini, A. Lo Giudice, C. Manfredotti, et al., IBIC analysis of CdTe/CdS solar cells, Nucl. Instrum. Methods Phys. Res. B 267 (12—13) (2009) 2181—2184.
[98] G. Vizkelethy, S. Onoda, T. Hirao, T. Ohshima, T. Kamiya, Time resolved ion beam induced current measurements on MOS capacitors using a cyclotron microbeam, Nucl. Instrum. Methods Phys. Res. B 267 (12—13) (2009) 2185—2189.
[99] J.R. Huddle, P.G. Grant, A.R. Ludington, R.L. Foster, Ion beam-induced luminescence, Nucl. Instrum. Methods Phys. Res. B 261 (1—2) (2007) 475—476.
[100] P. Rossi, C. Di. Maggio, G.P. Egeni, A. Galligioni, G. Gennaro, L. Giacomelli, et al., Cytological and his¬tological structures identification with the technique IBIL in elemental microanalysis, Nucl. Instrum. Methods Phys. Res. B 181 (1—4) (2001) 437—442.
[101] F. Mathis, G. Othmane, O. Vrielynck, H. Calvo del Castillo, G. Chene, T. Dupuis, et al., Combined PIXE/PIGE and IBIL with external beam applied to the analysis of Merovingian glass bead, Nucl. Instrum. Methods Phys. Res. B 268 (11—12) (2010) 2078—2082.
[102] S. Alamdari, M.J. Tafreshi, M.S. Ghamsari, Strong yellow-orange emission from aluminum and Indium co-doped ZnO nanostructures with potential for increasing the color gamut of displays, Appl. Phys. A Mater. Sci. Process. 125 (2019) 1—7.
[103] V. Zhdankin, Stability of hybrid DC/DC-converters to the effects of ionizing radiation from outer space, Mod. Autom. Technol. 3 (2005) 6—27. in Russian.
[104] R.D. Schrimpf, R.A. Weller, M.H. Mendenhall, R.A. Reed, L.W. Massengill, Physical mechanisms of single-event effects in advanced microelectronics, Nucl. Instrum. Methods Phys. Res. B 261 (1—2) (2007) 1133—1136.
[105] B.E. Fischer, M. Schlogl, J. Barak, E. Adler, S. Metzger, An example of what you can miss in single-event-effect testing, when you do not have a microprobe, Nucl. Instrum. Methods Phys. Res. B 158 (1—4) (1999) 245—249.
[106] M. Cholewa, A. Saint, G.J.F. Legge, T. Kamiya, Design of a single ion hit facility, Nucl. Instrum. Methods Phys. Res. B 130 (1—4) (1997) 275—279.
[107] T. Kamiya, T. Hirao, Y. Kobayashi, Development of single-ion hit techniques and their applications at TIARA of JAERI Takasaki, Nucl. Instrum. Methods Phys. Res. B 219—220 (2004) 1010—1014.
[108] R.A. Reed, G. Vizkelethy, J.A. Pellish, B. Sierawski, K.M. Warren, M. Porter, et al., Applications of heavy ion microprobe for single event effects analysis, Nucl. Instrum. Methods Phys. Res. B 261 (1—2) (2007) 443 —446.
[109] G. Vizkelethy, S.D. Phillips, L. Najafizadeh, J.D. Cressler, Nuclear microbeam studies of sili-con—germanium heterojunction bipolar transistors (HBTs), Nucl. Instrum. Methods Phys. Res. B 268 (11—12) (2010) 2092—2098.
[110] Ph. Barberet, S. Incerti, F. Andersson, F. Delalee, L. Serani, Ph. Moretto, Technical description of the CENBG nanobeam line, Nucl. Instrum. Methods Phys. Res. B 267 (12—13) (2009) 2003—2007.
[111] H. Khodja, M. Hanot, M. Carriere, J. Hoarau, J.F. Angulo, The single-particle microbeam facility at CEA-saclay, Nucl. Instrum. Methods Phys. Res. B 267 (12—13) (2009) 1999—2002.
[112] N. Arteaga-Marrero, J. Pallon, M.G. Olsson, V. Auzelyte, M. Elfman, P. Kristiansson, et al., The new cell irradiation facility at the lund nuclear probe, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 91—96.
[113] K.J. Kirkby, G.W. Grime, R.P. Webb, N.F. Kirkby, M. Folkard, K. Prise, et al., A scanning focussed verti¬cal ion nanobeam: a new UK facility for cell irradiation and analysis, Nucl. Instrum. Methods Phys.
Res. B 260 (1) (2007) 97—100.
[114] Y. Kobayashi, T. Funayama, S. Wada, M. Taguchi, H. Watanabe, Irradiation of single mammalian cells with a precise number of energetic heavy ions — applications of microbeams for studying cellular radi¬ation response, Nucl. Instrum. Methods Phys. Res. B 210 (2003) 308—311.
[115] H. Imaseki, T. Ishikawa, H. Iso, T. Konishi, N. Suya, T. Hamano, et al., Progress report of the single par¬ticle irradiation system to cell (SPICE), Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 81—84.
[116] T. Konishi, T. Ishikawa, H. Iso, N. Yasuda, M. Oikawa, Y. Higuchi, et al., Biological studies using mam¬malian cell lines and the current status of the microbeam irradiation system, SPICE, Nucl. Instrum. Methods Phys. Res. B 267 (12—13) (2009) 2171—2175.
[117] S.V. Springham, T. Osipowicz, J.L. Sanchez, L.H. Gan, F. Watt, Micromachining using deep ion beam lithography, Nucl. Instrum. Methods Phys. Res. B 130 (1—4) (1997) 155—159.
[118] J.A. van Kan, J.L. Sanchez, B. Xu, T. Osipowicz, F. Watt, Micromachining using focused high energy ion beams: deep ion beam lithography, Nucl. Instrum. Methods Phys. Res. B 148 (1—4) (1999) 1085—1089.
[119] F. Watt, Focused high energy proton beam micromachining: a perspective view, Nucl. Instrum. Methods Phys. Res. B 158 (1—4) (1999) 165—172.
[120] J.A. van Kan, T.C. Sum, T. Osipowicz, F. Watt, Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits, Nucl. Instrum. Methods Phys. Res. B 161—163 (2000) 366—370.
[121] C.Y. Chiam, J.A. van Kan, T. Osipowicz, C.N.B. Udalagama, F. Watt, Sidewall quality in proton beam writing, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 455—459.
[122] J.A. van Kan, A.A. Bettiol, F. Watt, Three-dimensional nanolithography using proton beam writing,
Appl. Phys. Lett. 83 (8) (2003) 1629—1631.
[123] J.A. van Kan, A.A. Bettiol, F. Watt, High precision 3D metallic microstructures produced using proton beam micromachining, Nucl. Instrum. Methods Phys. Res. B 181 (1—4) (2001) 258—262.
[124] F. Menzel, D. Spemann, J. Lenzner, J. Vogt, T. Butz, Proton beam writing using the high energy ion nanoprobe LIPSION, Nucl. Instrum. Methods Phys. Res. B 231 (1—4) (2005) 372—377.
[125] I. Rajta, S.Z. Szilasi, P. Furjes, Z. Fekete, Cs. Ducso, Si micro-turbine by proton beam writing and porous silicon micromachining, Nucl. Instrum. Methods Phys. Res. B 267 (12—13) (2009) 2292—2295.
[126] J.A. van Kan, A.A. Bettiol, S.Y. Chiam, M.S.M. Saifullah, K.R.V. Subramanian, M.E. Welland, et al., New resists for proton beam writing, Nucl. Instrum. Methods Phys. Res. B 260 (1) (2007) 460 —463.
[127] J.A. van Kan, A.A. Bettiol, F. Watt, Proton beam writing of three-dimensional nanostructures in hydro¬gen silsesquioxane, Nano Lett. 6 (3) (2006) 579—582.
[128] Y. Furuta, H. Nishikawa, T. Satoh, Y. Ishii, T. Kamiya, R. Nakao, et al., Applications of microstructures fabricated by proton beam writing to electric-micro filters, Nucl. Instrum. Methods Phys. Res. B 267 (12—13) (2009) 2285—2288.
[129] K. Ansari, J.A. van Kan, A.A. Bettiol, F. Watt, Fabrication of high aspect ratio 100 nm metallic stamps for nanoimprint lithography using proton beam writing, Appl. Phys. Lett. 85 (3) (2004) 476—478.
[130] K. Ansari, J.A. van Kan, A.A. Bettiol, F. Watt, Stamps for nanoimprint lithography fabricated by proton beam writing and nickel electroplating, J. Micromech. Microeng. 16 (10) (2006) 1967—1974.
[131] J.A. van Kan, A.A. Bettiol, K. Ansari, E.J. Teo, T.C. Sum, F. Watt, Proton beam writing: a progress review, Int. J. Nanotechnol. 1 (4) (2004) 464—479.
[132] T.C. Sum, A.A. Bettiol, H.L. Seng, I. Rajta, J.A. van Kan, F. Watt, Proton beam writing of passive wave¬guides in PMMA, Nucl. Instrum. Methods Phys. Res. B 210 (2003) 266—271.
[133] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, Springer- Verlag, Berlin, 1999.
[134] V.I. Grafutin, E.P. Prokop'ev, Positron annihilation spectroscopy in materials structure studies, Phys. Usp. 45 (1) (2002) 59—74.
[135] W. Triftshauser, Positron annihilation, in: U. Gonser (Ed.), Microscopic Methods in Metals, Springer- Verlag, Berlin, 1986, pp. 249 —295.
[136] A. Vehanen, K.G. Lynn, P.J. Schultz, M. Eldrup, Improved slow-positron yield using a single crystal tungsten moderator, Appl. Phys. A 32 (3) (1983) 163—167.
[137] A. Vehanen, in: L. Dorikens-Vanpraet, M. Dorikens, D. Segers (Eds.), Positron annihilation, World Scientific, Singapore, 1989, p. 39.
[138] A. Vehanen, K. Saarinen, P. Hautojarvi, H. Huomo, Profiling multilayer structures with monoenergetic positrons, Phys. Rev. B 35 (10) (1987) 4606—4610.
[139] A.D. Pogrebnjak:, S.N. Bratushka, O.V. Bondar, D.L. Alontseva, S.V. Plotnikov, O.M. Ivasishin, Nanocoatings: nanomaterials and nanostructures coatings fabrication using detonation and plasma detonation techniques, in: B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez (Eds.), CRC Concise Encyclopedia of Nanotechnology, CRC Press, Florida, 2015, pp. 600—623. Chapter 49.
[140] A.P.J. Mills, E.M. Gullikson, Solid neon moderator for producing slow positrons, Appl. Phys. Lett. 49 (17) (1986) 1121—1123.
[141] W. Bauer-Kugelman, G. Kogel, P. Sperr, W. Triftshauser, Positron lifetimes and positron moderation of 4H-SiC subjected to various treatments, Mater. Sci. Forum 255—257 (1997) 662—664.
[142] A.M.M. Leite, P. Debu, P. Perez, J.M. Reymond, Y. Sacquin, Efficient positron moderation with a com¬mercial 4H-SiC epitaxial layer, J. Phys. Conf. Ser. 791 (1) (2017) 12005.
[143] A.D. Pogrebnjak, A. Lozovan, G. Kirik, N. Schitov, A. Stadnik, S. Bratushka, The Structure and Properties of Nanocomposite Hybrid Coatings, URSS, Moscow, 2011. in Russian.
[144] D.A. Fisher, K.G. Lynn, D.W. Gidley, High-resolution angle-resolved positron reemission spectra from metal surfaces, Phys. Rev. B 33 (7) (1986) 4479 —4492.
[145] G. Kogel, Positron diffusion in solids and the reconstruction of inhomogeneous defect distributions from lifetime measurements, Appl. Phys. A 63 (3) (1996) 227—235.
[146] G. Kogel, D. Schodlbauer, W. Triftshauser, J. Winter, Investigation of micropores in amorphous hydro¬genated carbon by a pulsed positron beam, Phys. Rev. Lett. 60 (15) (1988) 1550—1553.
[147] T. Akahane, T. Chiba, N. Shiotani, S. Tanigawa, T. Mikado, R. Suzuki, et al., Stretching of slow positron pulses generated with an electron linac, Appl. Phys. A 51 (2) (1990) 146—150.
[148] V.J. Ghosh, Positron implantation profiles in elemental and multilayer systems, Appl. Surf. Sci. 85 (1995) 187—195.
[149] S. Valkealahti, R.M. Niemien, Monte-Carlo calculations of keV electron and positron slowing down in solids, Appl. Phys. A 32 (2) (1983) 95—106.
[150] S. Valkealahti, R.M. Niemien, Monte-Carlo calculations of keV electron and positron slowing down in solids. II, Appl. Phys. A 35 (1) (1984) 51—59.
[151] V.J. Ghosh, G.C. Aers, Positron stopping in elemental systems: Monte Carlo calculations and scaling properties, Phys. Rev. B 51 (1) (1995) 45—50.
[152] J. Gebauer, R. Krause-Rehberg, S. Eichler, W. Bauer-Kugelmann, G. Kogel, W. Triftshauser, et al., Vacancy defects in low-temperature-grown GaAs observed by continuous and pulsed slow positrons, Mater. Sci. Forum 255—257 (1997) 204—208.
[153] D. Schodlbauer, P. Sperr, G. Kogel, W. Triftshauser, A pulsing system for low energy positrons, Nucl. Instrum. Methods Phys. Res. B 34 (2) (1988) 258—268.
[154] A.F. Makhov, The penetration of electrons into solids, Sov. Phys. Solid. State 2 (9) (1961) 1942—1944.
[155] W. Triftshauser, Proc of the Intern. Workshop on Advanced Techniques of Positron Beam Generation and Control, 14—16 December, JAERI, Japan, 1998, p. 57.
[156] P.J. Schultz, K.G. Lynn, Interaction of positron beams with surfaces, thin films, and interfaces, Rev. Mod. Phys. 60 (3) (1988) 701—780.
[157] P. Willutzki, J. Stormer, G. Kogel, P. Sperr, D.T. Britton, R. Steindl, et al., An improved pulsed low- energy positron system, Meas. Sci. Technol. 5 (5) (1994) 548—554.
[158] P.G. Coleman, J.A. Baker, N.B. Chilton, Experiments on positron implantation, Mater. Sci. Forum 105—110 (1992) 213—220.
[159] R. Suzuki, Y. Kobayashi, T. Mikado, H. Ohgaki, M. Chiwaki, T. Yamazaki, et al., Slow positron pulsing system for variable energy positron lifetime spectroscopy, Jpn. J. Appl. Phys. 30 (3B) (1991)
L532-L534. Part 2.
[160] W. Bauer-Kugelmann, J.A. Duffy, J. Stormer, G. Kogel, W. Triftshauser, Diffusivity and surface transition rate of positrons in crystalline silicon as a function of dopant concentration, Appl. Surf. Sci. 116 (1997) 231-235.
[161] J.A. Duffy, W. Bauer-Kugelmann, G. Kogel, W. Triftshauser, Investigation of band bending in silicon by slow positron lifetime measurements, Appl. Surf. Sci. 116 (1997) 241-246.
[162] G. Pensl, R. Helbig, Silicon carbide (SiC) — Recent results in physics and in technology, Adv. Solid.
State Phys. 30 (1990) 133-156.
[163] L. Muehlhoff, W.J. Choyke, M.J. Bozack, J.T. Yates Jr., Comparative electron spectroscopic studies of surface segregation on SiC(0001) and SiC(0001), J. Appl. Phys. 60 (8) (1986) 2842—2853.
[164] H. Sonntag, S. Kalbitzer, Ion-implantation doping of crystalline 6H-SiC, Appl. Phys. A 61 (4) (1995) 363—367.
[165] G. Brauer, W. Anwand, P.G. Coleman, A.P. Knights, F. Plazaola, Y. Pacaud, et al., Positron studies of defects in ion-implanted SiC, Phys. Rev. B 54 (5) (1996) 3084—3092.
[166] K. Uhlmann, W. Triftshauser, G. Kogel, P. Sperr, D.T. Britton, A. Zecca, et al., A concept of a scanning positron microscope, Fresenius J. Anal. Chem. 353 (5) (1995) 594—597.
[167] A. Zecca, R.S. Brusa, M.P. Duarte-Naia, G.P. Karwasz, J. Paridaens, A. Piazza, et al., A pulsed positron microbeam, Europhys. Lett. 29 (8) (1995) 617—622.
[168] W. Triftshauser, G. Kogel, P. Sperr, D.T. Britton, K. Uhlmann, P. Willutzki, A scanning positron micro¬scope for defect analysis in materials science, Nucl. Instrum. Methods Phys. Res. B 130 (1—4) (1997) 264—269.
[169] G. Triftshauser, G. Kogel, W. Triftshauser, M. Springer, B. Strasser, K. Schreckenbach, A high intense reactor based positron source, Appl. Surf. Sci. 116 (1997) 45—48.
[170] K. Uhlmann, D.T. Britton, G. Kogel, A new optical column for a scanning positron microscope, Meas. Sci. Technol. 6 (1995) 932—938.
[171] K. Uhlmann, D.T. Britton, G. Kogel, Through the lens reflection remoderator for positrons, Optik 98 (1994) 5—10.
[172] K.F. Canter, G.R. Brandes, T.N. Horsky, P.H. Lippel, A.P. Mills Jr., The high brightness beam at Brandeis, in: J.W. Humberston, E.A.G. Armour (Eds.), Atomic Physics with Positrons, vol. 169, Plenum Press, New York, 1987, pp. 153—160.
[173] A.D. Pogrebnjak, O.G. Bakharev, N.A. Pogrebnjak Jr, Yu.V. Tsvintarnaya, V.T. Shablja, R. Sandrik, et al., Certain features of high-dose and intensive implantation of Al ions in iron, Phys. Lett. A 265 (3) (2000) 225—232.
[174] A.D. Pogrebnjak, A.D. Mikhaliov, N.A. Pogrebnjak Jr., Yu.V. Tsvintarnaya, V.I. Lavrentiev, M.
Iljashenko, et al., Evolution of vacancy defects and dislocations in surface layers of iron as a result of pulsed electron beam treatment, Phys. Lett. A 241 (6) (1998) 357—363.
[175] A.D. Pogrebnjak, A.P. Shpak, N.A. Azarenkov, V.M. Beresnev, Structures and properties of hard and superhard nanocomposite coatings, Phys. Usp. 52 (1) (2009) 29—54.
[176] Yu.E. Gordienko, N.I. Slipchenko, V.V. Petrov, Sensitivity of microwave resonator measuring transdu¬cers for microwave microscopy, radioelektron, Informatika 3 (2007) 19—23. in Russian.
[177] N.I. Slipchenko, Physical basis of near-field UHF diagnostics of materials and media (Doctoral Thesis), Phys.-Math. Sci., Sumy, 2008.
[178] F. Kazemi, F. Mohanna, J. Ahmadi-shokouh, Microwave reflectometry for noninvasive imaging of skin abnormalities, Australas. Phys. Eng. Sci. Med. 41 (4) (2018) 881—890.
[179] Yu.E. Gordienko, G.N. Bendeberia, L.P. Halchynetskyy, et al., nZnSe(O,Te)/Ni type schottky diodes for detection of the UV radiation in the biologically active range, in: Proceedings of the Third International Scientific and Technical Conference on Sensor Electronics and Microsystem Technologies, 2—6 June, Odessa, Ukraine, 2008, p. 241 (in Ukrainian).
[180] O.O. Ryabukhin, Y.O. Gordienko, N.I. Slipchenko, Integrated microslider resonator microprobe of the microwave microscope, Dekl. Patent No. 71456A, 2004 (in Ukrainian).
[181] N.A. Azarenkov, V. Orlov, N. Slipchenko, V. Udovitskiy, V. Farenik, Nanoscience and nanotechnologies: modern achievements, perspectives, developing problem tasks, J. Surf. Phys. Eng. 3 (1—2) (2005) 127—146.
[182] E.A. Ash, G. Nicholls, Super-resolution aperture scanning microscope, Nature 237 (5357) (1972) 510—512.
[183] C.A. Bryant, J.B. Gunn, Noncontact technique for the local measurement of semiconductor resistivity, Rev. Sci. Instrum. 36 (11) (1965) 1614—1616.
[184] M. Fee, S. Chu, T.W. Hansch, Scanning electromagnetic transmission line microscope with sub-wavelength resolution, Opt. Commun. 69 (3—4) (1989) 219 —224.
[185] T. Wei, X.-D. Xiang, W.G. Wallace-Freedman, P.G. Schultz, Scanning tip microwave near-field micro¬scope, Appl. Phys. Lett. 68 (25) (1996) 3506—3508.
[186] M. Golosovsky, D. Davidov, Novel millimeter-wave near-field resistivity microscope, Appl. Phys. Lett.
68 (11) (1996) 1579—1581.
[187] C.P. Vlahacos, R.C. Black, S.M. Anlage, A. Amar, F.C. Wellstood, Near-field scanning microwave micro¬scope with 100 pm resolution, Appl. Phys. Lett. 69 (21) (1996) 3272—3274.
[188] D.E. Steinhauer, C.P. Vlahacos, S.K. Dutta, F.C. Wellstood, S.M. Anlage, Surface resistance imaging with a scanning near-field microwave microscope, Appl. Phys. Lett. 71 (12) (1997) 1736—1738.
[189] D.E. Steinhauer, C.P. Vlahacos, S.K. Dutta, B.J. Feenstra, F.C. Wellstood, S.M. Anlage, Quantitative imaging of sheet resistance with a scanning near-field microwave microscope, Appl. Phys. Lett. 72 (7) (1998) 861—863.
[190] J.C. Booth, D.H. Wu, S.M. Anlage, A broadband method for the measurement of the surface impedance of thin films at microwave frequencies, Rev. Sci. Instrum. 65 (6) (1994) 2082—2090.
[191] S.M. Anlage, J.H. Lu, J.M. Wu, S.Y. Yang, H.C. Yang, J.D. Chern, Effects of magnetic fields and micro-wave irradiation on step-edge and bi-epitaxial YBa/sub 2/Cu/sub 3/O/sub y/ SQUIDs, IEEE Trans. Appl. Supercond. 7 (2) (1997) 3686—3689.
[192] S.J. Stranick, P.S. Weiss, A versatile microwave-frequency-compatible scanning tunneling microscope, Rev. Sci. Instrum. 64 (5) (1993) 1232—1234.
[193] S.J. Stranick, P.S. Weiss, A tunable microwave frequency alternating current scanning tunneling micro¬scope, Rev. Sci. Instrum. 65 (4) (1994) 918—921.
[194] D.W. Van der Weide, P. Neuzil, The nanoscilloscope: combined topography and AC field probing with a micromachined tip, J. Vac. Sci. Technol. B 14 (6) (1996) 4144—4147.
[195] C.P. Vlahacos, D.E. Steinhauer, S.K. Dutta, B.J. Feenstra, S.M. Anlage, F.C. Wellstood, Quantitative topographic imaging using a near-field scanning microwave microscope, Appl. Phys. Lett. 72 (14)
(1998) 1778—1780.
[196] B.J. Feenstra, C.P. Vlahacos, A.S. Thanawalla, D.E. Steinhauer, S.K. Dutta, F.C. Wellstood, et al., Near¬field scanning microwave microscopy: measuring local microwave properties and electric field distribu¬tions, in: IEEE MTT-S Int. Microw. Symp. Dig. (Cat. No. 98CH36192), Baltimore, MD, vol. 2, 1998,
pp. 965—968.
[197] A.D. Pogrebnjak, Yu.N. Tyurin, Modification of material properties and coating deposition using plasma jets, Phys. Usp. 48 (5) (2005) 487—514.
[198] V.I. Boiko, A.N. Valyaev, A.D. Pogrebnyak, Metal modification by high-power pulsed particle beams, Phys. Usp. 42 (11) (1999) 1139—1166.
[199] V.I. Lavrent'ev, A.D. Pogrebnyak, R. Sandrik, Evolution of vacancy defects in the surface layers of a metal irradiated with a pulsed electron beam, JETP Lett. 65 (8) (1997) 651—655.
[200] A.D. Pogrebnjak, A.P. Shpak, V.M. Beresnev, Structure and properties of protective composite coatings and modified surfaces prior and after plasma high energy jets treatment, in: A. Malik, R.J. Rawat (Eds.), New Nanotechniques, Nova Science Publ., New York, 2009, pp. 21—114.
[201] V.I. Lavrent'ev, A.D. Pogrebnyak, R. Sandrik, Local surface segregations of implanted aluminum in an iron crystal with a low density of defects, JETP Lett. 65 (1) (1997) 91—94.
[202] A.D. Shpak, Yu.A. Kunitskii, V.L. Karbovskii, Cluster and Nanostructural Materials, Akademperiodika, Kiev, 2001.
[203] M. Haaks, Scanning positron microscopy: non-destructive imaging of plastic deformation in the micrometer range, CIRP Ann. Manufact. Technol. 57 (1) (2008) 537—540.
[204] A.D. Pogrebnjak, O.G. Bakharev, V.V. Sushko, S. Bratushka, A.D. Mikhaliov, Yu.F. Ivanov, et al., Mixing of Ta-Fe and MO-Fe systems using a low-energy, high-current electron beam, Surf. Coat. Technol. 99 (1-2) (1998) 98—110.
[205] X.D. Zhang, S.Z. Hao, T. Grosdidier, J.X. Zou, B. Gao, B. Bolle, et al., Surface modification of light alloys by low-energy high-current pulsed electron beam, J. Metall. 2012 (2012) 1—10.
[206] M.S. Vorobyov, Yu.F. Ivanov, Yu.H. Akhmadeev, P.V. Moskvin, E.A. Petrikova, I.V. Lopatin, Surface structure and properties of high-chromium steel irradiated with a submillisecond pulsed electron beam, J. Phys.: Conf. Ser. 1115 (2018) 032064.
[207] Yu.F. Ivanov, A.A. Klopotov, E.A. Petrikova, Yu.A. Abzaev, O.V. Ivanova, Surface of high-chromium steel modified by an intense pulsed electron beam, Steel Transl. 47 (10) (2017) 669—674.
[208] Q. Luo, S. Yang, K.E. Cooke, Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: deposition rate, structure and tribological properties, Surf. Coat. Technol. 236 (2013) 13—21.
[209] A. Obrosov, M. Naveed, A.A. Volinsky, S. Weifi, Substrate frequency effects on CrxN coatings deposited by DC magnetron sputtering, J. Mater. Eng. Perform. 26 (2017) 366—373.
[210] [217] A.D. Pogrebnjak, O.V. Bondar, O.V. Sobol, V.M. Beresnev, Changing of defect's structure and properties of superhard nanostructured Ti-Si-N coatings, fabricated using CPVD, before and after annealing, Soft Nanosci. Lett. 3 (3) (2013) 46—51.
[211] J. Musil, M. Sasek, P. Zeman, R. Cerstvy, D. Herman, J.G. Han, et al., Properties of magnetron sputtered Al—Si—N thin films with a low and high Si content, Surf. Coat. Technol. 202 (15) (2008) 3485—3493.
[212] H. Jung, H.S. Park, H.D. Na, J.W. Lim, J.J. Lee, J.H. Joo, Mechanical properties of (Ti,Cr)N coatings deposited by inductively coupled plasma assisted direct current magnetron sputtering, Surf. Coat. Technol. 169-170 (2003) 424—427.
[213] A.D. Pogrebnjak, Investigation of element profiles, defects, phase composition and physical and mechanical properties of superhard coatings Ti-Hf-Si-N, Mater. Sci. Appl. 4 (4A) (2013) 24—31.
[214] H. Chen, B.C. Zheng, Y.G. Li, Z.L. Wu, M.K. Lei, Flexible hard TiAlSiN nanocomposite coatings depos¬ited by modulated pulsed power magnetron sputtering with controllable peak power, Thin Solid Films 669 (2018) 377—386.
[215] A.D. Pogrebnjak, Structure and properties of nanostructured (Ti-Hf-Zr-V-Nb) N coatings, J.
Nanomater. 2013 (2013) 1—12. Available from: https://doi.org/10.1155/2013/780125.
[216] A.D. Shpak, Yu.A. Kunitskii, S.Yu. Smik, Diagnostics of Nanosystems, Akademperiodika, Kiev, 2003 (Chapters 1, 2).
[217] Yu.P. Gomza, V.V. Klepko, S.D. Nesin, E.A. Lysenkov, Yu.A. Kunyts'ky, M.Yu. Barabash, et al., X-ray examinations of short-range ordering of ultra-thin films, Nanosist. Nanomater. Nanotekhnol. 7 (2) (2009) 411—419. in Ukrainian.
[218] V.I. Lavrent'ev, A.D. Pogrebnyak, A.D. Mikhalev, N.A. Pogrebnyak, R. Shandrik, A. Zecca, et al., Observation of carbon segregation and evolution of vacancy defects in a surface layer of iron exposed to a low-energy high-current electron beam, Tech. Phys. Lett. 24 (5) (1998) 334—337.
[219] L.A. Gorbachev, A.D. Pogrebnjak, Formation of new phases, dark spots and slide bands in low carbon steel under the effect ofcyclic deformation, Phys. Met. Adv. Technol. 32 (1) (2010) 121—132.
[220] N.N. Cherenda, V.V. Uglov, M.G. Poluyanova, V.M. Astashynski, A.M. Kuzmitski, A.D. Pogrebnjak, et al., The influence of the coating thickness on the phase and element composition of a 'ti coating/ steel' system surface layer treated by a compression plasma flow, plasma process, Polymers 6 (3)
(2009) S178—S182.
[221] A.D. Pogrebnyak, O.V. Sobol', V.M. Beresnev, P.V. Turbin, S.N. Dub, G.V. Kirik, et al., Features of the structural state and mechanical properties of ZrN and Zr(Ti)-Si-N coatings obtained by ion-plasma deposition technique, Tech. Phys. Lett. 35 (10) (2009) 925—928.
[222] A.D. Pogrebnyak, M.M. Danilenok, A.A. Drobyshevskaya, V.M. Beresnev, N.K. Erdybaeva, G.V. Kirik, et al., Investigation of the structure and physicochemical properties of combined nanocomposite coat¬ings based on Ti—N—Cr/Ni—Cr—B—Si—Fe, Russ. Phys. J. 52 (12) (2009) 1317—1324.
[223] E.A. Volopilkin, A.E. Parafin, A.N. Reznik, Intermodulation in a microwave resonator with a high- temperature superconductor, Tech. Phys. 45 (2) (2000) 214—220.
[224] A.A. Semenov, S.F. Karmanenko, A.A. Melkov, A.V. Bobyl', R.A. Suris, Yu.M. Gal'perin, et al., The prop¬agation of magnetostatic surface waves in ferrite/superconductor structures, Tech. Phys. 46 (10) (2001) 1218—1224.
[225] A.N. Reznik, N.V. Yurasova, Near-field microwave tomography of biological objects, Tech. Phys. 49 (4) (2004) 485—493.
[226] M. Tabib-Arat, J.V. Katz, LeClair, Evanescent microwaves: a novel super-resolution noncontact nonde¬structive imaging technique for biological applications, IEEE Trans. Instrum. Meas. 48 (6) (1999) 1111—1116.
[227] D.E. Steinhauer, S.M. Anlage, Microwave frequency ferroelectric domain imaging of deuterated trigly¬cine sulfate crystals, J. Appl. Phys. 89 (4) (2001) 2314—2321.
[228] S.-C. Lee, S.M. Anlage, Spatially-resolved nonlinearity measurements of YBa2Cu3O7-g bicrystal grain boundaries, Appl. Phys. Lett. 82 (12) (2003) 1893—1895.
[229] A.D. Pogrebnjak, Sh.M. Ruzimov, D.L. Alontseva, P. Zukowski, C. Karwat, C. Kozak, et al., Structure and properties of coatings on Ni base deposited using a plasma jet before and after electron a beam irradiation, Vacuum 81 (10) (2007) 1243—1251.
[230] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 33 (4) (1989) 233—315.
[231] R.W. Siegel, Cluster-assembled nanophase materials, Annu. Rev. Mater. Sci. 21 (1991) 559—578.
[232] S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid. Films 268 (1—2) (1995) 64—71.
[233] A.D. Pogrebnjak, I.V. Yakushchenko, O.V. Bondar, V.M. Beresnev, K. Oyoshi, O.M. Ivasishin, et al., Irradiation resistance, microstructure and mechanical properties of nanostructured (TiZrHfVNbTa) N coatings, J. Alloy. Compd. 679 (2016) 155—163.
[234] P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings, Prog. Mater. Sci. 51 (8) (2006) 1032—1114.
[235] J. Musil, Hard and superhard nanocomposite coatings, Surf. Coat. Tech. 125 (1—3) (2000) 322—330.
[236] R.A. Andrievski, Nanomaterials based on high-melting carbides, nitrides and borides, Russian Chem. Rev. 74 (12) (2005) 1061 — 1072.
[237] J. Musil, Hard nanocomposite coatings: thermal stability, oxidation resistance and toughness, Surf. Coat. Tech. 207 (2012) 50—65.
[238] V.I. Grafutin, O.V. Ilyukhina, G.G. Myasishcheva, E.P. Prokopiev, S.P. Timoshenkov, Yu.V. Funtikov, et al., Positronics and nanotechnologies: possibilities of studying nanoobjects in materials and nano¬materials by the method of positron-annihilation spectroscopy, Phys. At. Nucl. 72 (10) (2009)
1672 1681.
[239] J. Kansy, Mater. Sci. Forum 652 (2001) 363—365.
[240] A.D. Pogrebnjak, A.A. Bagdasaryan, A. Pshyk, K. Dyadyura, Multicomponent nanocomposite coatings with an adaptive behavior in the surface engineering, Phys. Uspekhi 60 (2017). Available from: https:// doi.org/10.3367/UFNe.2016.12.038018. in press.
[241] P. Konarski, I. Iwanejko, A. Mierzejewska, R. Diduszko, Morphology of working environment micropar¬ticles, Vacuum 63 (4) (2001) 679—683.
[242] A.D. Pogrebnjak, A.P. Shpak, V.M. Beresnev, G.V. Kirik, D.A. Kolesnikov, F.F. Komarov, et al., Stoichiometry, phase composition, and properties of superhard nanostructured Ti-Hf-Si-N coatings obtained by deposition from high-frequency vacuum-arc discharge, Tech. Phys. Lett. 37 (7) (2011) 636—640.
[243] A.D. Pogrebnjak, V.M. Beresnev, Nanocoatings Nanosystems Nanotechnologies, Bentham Science, Sharjah, UAE, 2012.
[244] A.D. Pogrebnjak, A.P. Shpak, V.M. Beresnev, D.A. Kolesnikov, Yu.A. Kunitskii, O.V. Sobol, et al., Effect of thermal annealing in vacuum and in air on nanograin sizes in hard and superhard coatings Zr-Ti-Si- N, J. Nanosci. Nanotechnol. 12 (12) (2012) 9213—9219.
[245] H.E. Shaefer, Investigation of thermal equilibrium vacancies in metals by positron annihilation, Phys. Status Solidi 102 (1) (1987) 47—65.
[246] S.V. Rempel', A.I. Gusev, Surface segregation in decomposing carbide solid solutions, JETP Lett. 88 (7) (2008) 435—440.
[247] A.D. Pogrebnjak, I.V. Yakushchenko, A.A. Bagdasaryan, O.V. Bondar, R. Krause-Rehberg, G. Abadias, et al., Microstructure, physical and chemical properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings under different deposition conditions, Mater. Chem. Phys. 147 (3) (2014) 1079—1091.
[248] R. Wurschum, P. Farber, R. Dittmar, P. Scharwaechter, W. Frank, H.-E. Schaefer, Thermal vacancy for¬mation and self-diffusion in intermetallic Fe3Si nanocrystallites of nanocomposite alloys, Phys. Rev. Lett. 79 (24) (1997) 4918—4921.
[249] A.D. Pogrebnjak, E.A. Bazyl, Modification of wear and fatigue characteristics of Ti-V-Al alloy by Cu and Ni ion implantation and high-current electron beam treatment, Vacuum 64 (1) (2001) 1—7.
[250] S. Veprek, The search for novel, superhard material, J. Vac. Sci. Technol. A 17 (5) (1999) 2401—2421.
[251] A.I. Gusev, Nanomaterials, Nanostructures and Nanotechnology, Fizmatlit, Moscow, 2005.
[252] A.D. Pogrebnjak, V.M. Beresnev, D.A. Kolesnikov, M.V. Kaverin, A.P. Shypylenko, K. Oyoshi, et al., The effect of segregation and thermodiffusion on the formation of interfaces in nanostructured (Ti-Hf-Zr-V- Nb)N multielement coatings, Technical Phys. Lett. 39 (3) (2013) 280—283.
[253] А.А. Bagdasaryan, P. Konarski, Yu. Novikov, The elemental composition and surface morphology of (Ti-Hf-Zr-V-Nb)N nanostructured coating, ФШ ФИП PSE 12 (3) (2014) 446—456. in Russian.
[254] L.S. Palatnik, M.Ya. Fuks, V.M. Kosevich, Mechanism of Formation and Substructure of Condensed Films, Nauka, Moscow, 1972. in Russian.
[255] R. Wurschum, E. Shapiro, R. Dittmar, H.E. Schaefer, High-temperature studies of grain boundaries in ultrafine grained alloys by means of positron lifetime, Phys. Rev. B 62 (18) (2000) 12021—12027.

Добавить комментарий

Handbook of Modern Coating Technologies

Film formation of nanosized hard latex in soft polymer matrix: an excimer study

Our study aims to investigate how the latex film formation is and can be performed using the mixture of two types of latex, first of the noncompatible nanosized hard P-labeled …

Film formation using pure and mixed latexes using energy transfer method

In a two-stage process, the PMMA particles are used to prepare the mixtures for P- and N- labeled and/or pure N-labeled latex films on an individual basis [154]. On the …

Void closure during latex film formation

In consideration of SSF and SEM results together with Monte Carlo simulations, it is evident that the film is optically clearer throughout the process using high-T latexes in relation to …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.