Г.А.Кравков

Проверка гипотезы.

«В 1966 – 1973 г.г. по инициативе академика Н.Д. Девяткова в различных организациях страны был проведен длительный цикл экспериментальных исследований. Эксперименты, проведенные с микроорганизмами и лабораторными животными не только подтвердили основные положения концепции, но и позволили сформулировать основные закономерности взаимодействия миллиметровых волн с живыми организмами…

Экспериментальный этап завершился широким квалифицированным обсуждением научной общественностью проблемы биологической значимости миллиметровых волн на специальной сессии Отделения общей физики и астрономии АН СССР в январе 1973 г. … Основные результаты исследований и материалы дискуссии были опубликованы в академическом журнале «Успехи физических наук» (1973 г., № 4). Эта публикация привлекла к обсуждаемой проблеме внимание ученых из различных стран, в которых были поставлены исследования, копирующие отечественные работы». (7)

По содержанию публикации видно, что начинавшие исследования люди не вполне сознавали, с чем им придется столкнуться. Облучали, меняя частоту, выбранные для экспериментов биообъекты, фиксировали полученные результаты, анализировали их и честно вынесли на обсуждение коллег. Это наиболее бесхитростный материал, из всех найденных и прочитанных мной. Никто, похоже, не догадывался во что, в конечном счете, выльется их работа. Иначе публикация во всемирно известном, переводном на английский язык, академическом журнале никогда не состоялась бы. В конце 70-х годов, когда было осознано, наконец, вполне значение миллиметровых волн, исправлять что-либо было поздно. Советский Союз потерял, может быть, уникальную возможность вырваться далеко вперед в данной области знаний и их практических применений, в том числе и в военном деле.

Познакомимся с наиболее интересными из числа выполненных в 1966 – 73 г.г. экспериментов. Классическим стал опыт Р.Л. Виленской и А.З. Смолянской.

«Исследовано действие миллиметровых волн на внутриклеточные системы, обуславливающие летальный синтез у бактерий, т.е. синтез веществ, приводящий клетку к гибели. В качестве тест-объекта был выбран колициногенный фактор кишечной палочки. Кол-фактор представляет собой внехромосомный генетический элемент. Функциональная активность этого элемента обычно репрессирована. Депрессия кол-фактора приводит к синтезу особого белкового вещества, названного колицином; клетка при этом погибает» (8).

Эффект характеризовался коэффициентом индукции КИ – отношением процентного содержания микроорганизмов, выделяющих колицин, в облученных и необлученных культурах. Резонансный характер отклика на облучение выразился в следующем: при длине волны l = 6,5 мм КИ = 3,8 (процент выделяющих колицин бактерий увеличился в 3,8 раза против исходного), при l = 6,51 мм КИ = 1,0 (положение вернулось к исходному, до облучения), и далее:

  • при l = 6,53 мм КИ = 3,3;
  • при l = 6,54 мм КИ = 1,0;
  • при l = 6,55 мм КИ = 2,9;
  • при l = 6,57 мм КИ = 1,2;
  • при l = 6,58 мм КИ = 2,2;

Таким образом, на длинах волн l = 6,5; 6,53; 6,55; 6,58 мм облучение оказывает влияние на жизнедеятельность микроорганизмов; на промежуточных длинах волн l=6,51; 6,54; 6,57 мм – не оказывает. На графике зависимость выглядит как угасающая по амплитуде по мере роста длины волны синусоида, шаг ее Dl = 0,02 мм, отношение l / Dl » 300 (величина, характеризующая узость резонансных полос, соответствующих данному воздействию, удивившая поначалу специалистов).

Одновременно был обнаружен пороговый характер явления, выразившийся в следующем: коэффициент индукции начинает быстро нарастать при мощности излучения 0,001 мВт/см2 (миллионная доля ватта), достигает максимума при мощности в 0,01 мВт/см2 и при дальнейшем ее увеличении не растет: «изменение величины плотности потока мощности в 100 раз от 0,01 до 1,00 мВт/см2 не влияло на коэффициент индукции и лишь дальнейшее уменьшение мощности до 0,01 мВт/см2 привело к резкому падению биологического эффекта» (8).

Очень похоже на поведение глаз человека, которые хорошо видят при комнатном освещении, так же хорошо на солнце, а вернувшись в комнату, перестают видеть при освещении, ранее достаточном. Совпадение тем более любопытное, что зрение человека имеет чисто информационную функцию, никаких других.

И далее: «Эффект находился в прямой зависимости от времени облучения. Облучение в течение 30 мин. при температуре t = 20°С не оказывало никакого влияния на синтез колицина, после облучения в течение одного часа количество синтезировавших колицин клеток возросло в 1,5-2 раза, а после двух часов – было максимальным. При 37°С индукция синтеза колицина имела место даже при облучении в течение 30 мин. Это, по-видимому, следует связать с более высокой функциональной активностью всех систем клетки в этих условиях» (8).

Не только частоты, близкие к 6,5 мм влияют на синтез колицина. На этой волне эффект максимален, КИ = 3,8; потому ее окрестности и выбраны для иллюстрации острорезонансного характера воздействия. Но сходным образом влияет на клетки E.coli и длина волны l = 5,8 мм, здесь КИ = 3,0; и l = 7,1 мм КИ = 2,4. Во всех трех случаях эффект появляется не ранее 30 мин. после начала облучения, растет с течением времени, достигает приведенных выше максимумов через два часа и при дальнейшем облучении не растет.

Могут подумать, что зависимость носит дозовый характер, но это не так. Доза зависит и от времени и от мощности излучения, а ее стократное послепороговое увеличение никак не повлияло на коэффициент индукции, который после достижения порога по мощности становится исключительно функцией времени, и то до достижения определенного двухчасового предела, после чего не растет вообще. Не существует, кажется, способа переменой частоты или колебаниями мощности заставить клетки отреагировать на воздействие быстрее, чем за 30 мин. Похоже на работу информационного канала с ограниченной пропускной способностью. Близкий аналог – телеграфист или радист, принимающий код Морзе по старинке, на слух, и записывающий сообщение вручную. Человека тоже можно «разогреть» окриком или просьбой, увеличить скорость приема, но не в сто раз конечно.

Объясняется существование и нижнего порога по времени, - невозможно по первой букве, слову или даже фразе угадать смысл всей телеграммы, и верхнего, - повторная передача сообщения не влияет на реакцию на него.

Закончим знакомство с экспериментом: «Отсутствие зависимости эффекта от мощности является еще одним веским доводом в пользу нетеплового воздействия миллиметровых волн, так как любые тепловые эффекты зависят в первую очередь от интенсивности потока…

До настоящего времени способность различных агентов (как физических, так и химических) индуцировать летальный (смертельный – Авт.) для бактериальной клетки синтез колицина связывали в основном со способностью этих агентов дезинтегрировать ДНК или блокировать ее синтез… Миллиметровое излучение можно рассматривать как принципиально новый агент, который не вызывая непосредственных повреждений в молекуле ДНК, приводит к нарушению механизма регуляции функций генетических элементов в клетке, в частности, экстрахромосомных элементов» (8).

В.Ф. Кондратьевой, Е.П. Чистяковой и др. изучалось влияние ММ-волн на свойства бактерий: «Миллиметровые волны обладают значительным губительным действием на бактерии. Показана зависимость выживаемости от длины волны… Наиболее губительное действие оказывает длина волны 7,2 мм».

Н.П. Залюбовская, эксперименты с насекомыми (мухи-дрозофилы): «После облучения (15-60 мин.) взрослые мужские и женские особи не погибали, внешне не было отмечено никаких изменений, а после скрещивания такие насекомые, как правило, давали нормальное потомство. Однако число потомков у облученных родителей уменьшалось, плодовитость насекомых зависела от длины волны, на которой проводилось облучение и времени воздействия… В первом поколении мутанты появлялись редко, наибольшее количество мутантов отмечали во втором поколении после длительного воздействия излучения с длиной волны 6,5 мм…

Облучение экспериментальных животных (белых крыс и мышей) в течение 40-50 дней по 10-15 мин. не приводило к летальному исходу. Однако у таких животных отмечали вялость, взъерошенность шерсти, отказ от пищи и питья в течение некоторого времени… У облученных животных снижалась резистентность (сопротивляемость – Авт.) организма к инфекциям» (8).

Другие опубликованные доклады подтверждают: наиболее губительна для живого волна 6,5 мм.

Самым любопытным и неожиданным оказалось сообщение Р.Л. Виленской и Л.А. Севастьяновой. Приведем его описание по более позднему источнику 2001 г. (9), здесь более развернутый ряд резонансных частот, и добавим интересные подробности из публикации 1973 г.

Исследовалась реакция кроветворной системы животных (крыс и мышей) на внешние облучения по количеству и состоянию клеток костного мозга. Облучение производилось в трех вариантах: жестким ионизирующим рентгеновским излучением; миллиметровыми волнами; совместно обоими видами. Результаты оказались такими: при облучении рентгеновскими лучами число клеток костного мозга уменьшилось до 50-60 % исходного; при облучении миллиметровыми волнами – до 96 % исходного. По логике вещей, совместное облучение должно было бы привести к еще большему снижению числа клеток костного мозга за счет суммарного действия двух видов излучения. На деле вышло так.

При комбинированном действии «миллиметровые волны – рентгеновское излучение» на длинах миллиметровых волн l = 7,07; 7,10; 7,12; 7,15; 7,17; 7,20; 7,22; 7,25 и 7,27 мм количество клеток костного мозга у подопытных животных увеличилось и достигло 85-90 % исходных значений. Если же при таком комбинированном воздействии использовали длины волн l = 7,08; 7,09; 7,11; 7,13; 7,14; 7,16; 7,18; 7,19; 7,21; 7,23; 7,24 и 7,26, то количество клеток костного мозга оказывалось на уровне действия только одного рентгеновского излучения, т.е. составило 50-60 % от исходного значения.

Любопытная деталь: в исследовании В.Ф. Кондратьевой длины волн 7,15 мм и 7,20 мм названы самыми губительными для микроорганизмов. Для мышей и крыс они оказались целебными.

Посмотрим доклад Р.Л. Виленской и Л.А. Севастьяновой на сессии 1973 г. Вначале характерная для того времени констатация очевидного парадокса:

«Несмотря на то, что излучение СВЧ миллиметрового диапазона с длиной волны l = 7,1 мм поглощается в поверхностном слое кожи животных на глубине примерно 3×10-2 см, было обнаружено уменьшение количества пораженных рентгеновским излучением клеток костного мозга» (8).

Зависимость эффекта от мощности: «До значения плотности потока мощности Р=9 мВт/см2 никакого влияния на N/N0 облучение животных полем СВЧ не оказывает… Затем при увеличении Р число неразрушенных клеток возрастает практически скачком до величины 0,85. Дальнейший рост Р не сопровождается увеличением N/N0».

Зависимость от времени: «До интервала времени t = 30 мин. действие СВЧ вообще не проявляется. При возрастании времени облучения до 60 мин. наблюдается увеличение защитного эффекта и N/N0 достигает 0,8. Дальнейший рост экспозиции не сопровождается сколько-нибудь заметным увеличением эффекта» (8).

Кроме перечисленных выше длин волн защитными свойствами обладают также l = 6,7 мм и 6,82 мм.

В таком виде впервые явилась миру микроволновая проблема. С годами отношение к миллиметровым волнам изменилось, в их адрес было сказано много добрых слов, они будут процитированы и ваше мнение тоже улучшится. Но черного кобеля не отмоешь добела. В конце концов, вы вернетесь в исходную точку. Как часто бывает, первое впечатление от новинки оказалось верным.

Идея о чувствительности биологических объектов к слабы электромагнитным полям получила тогда же «косвенное теоретическое подтверждение в работе известного физика с мировым именем – Г. Фрёлиха. Основной вывод из этой работы сводится к тому, что отдельные участки плазматической мембраны живой клетки находятся в возбужденном колебательном состоянии (когерентные колебания) в диапазоне частот 1011 – 1012 Гц, что по современной классификации соответствует крайне высокочастотному диапазону… Мощность электромагнитных колебаний, излучаемых электрическими диполями плазматических мембран клетки, равна примерно 10-23 Вт в узкой полосе частот. Следовательно, для живых клеток столь низкая величина мощности является значимой величиной, поэтому клетки «должны» быть, в соответствии с принципом взаимности, чувствительными к внешним излучениям с мощностью такого же порядка величин» (10).

Долгое время нельзя было и мечтать о непосредственном обнаружении клеточного излучения из-за его запредельно малой мощности. Прошло тридцать лет, прежде чем удалось получить прямое экспериментальное подтверждение основного положения гипотезы: «9 декабря 1997 г. удалось с помощью уникальной радиометрической системы, созданной в Научно-исследовательском Центре квантовой медицины «Видгук» (Киев, Украина) впрямую зарегистрировать неравновесную компоненту излучения человека именно в ММ-диапазоне. Она составила величину 10-20-10-21 Вт/Гц. В этот день гипотеза о физике живого превратилась в научное направление «Физика живого» (11).

Сильнейшим аргументом в пользу признания ММ-воздействия информационным считают наличие «плато» или «ступеньки» на графике зависимости эффекта от мощности излучения. Можно привести подтверждающие доводы специалистов цитаты, но лучше не нужно. Они мало что прояснят рядовому читателю. Разумнее использовать аналогию, найти пример заведомо информационного воздействия, построить соответствующий график и посмотреть, будет на нем «ступенька» или нет.

Понятно без доказательств, что мощность акустических колебаний, излучаемых голосовым аппаратом командира, отдающего команды «направо» или «налево» строю солдат, недостаточна для вращения подчиненных. Языком не то что человека повернуть, антенны (т.е. уши) согреть ему невозможно. Но люди вертятся. Воспринимают смысл приказа и исполняют его за счет внутренней энергии организмов. Акустическое воздействие имеет порог по мощности. Если команда отдается шепотом, никто ее не услышит, а если будет выкрикнута, тогда (используем академический отчет): «при увеличении Р (мощности) число неразрушенных клеток (у нас – выполнивших приказ солдат) возрастает практически скачком до величины 0,85» (у нас до 1,00. Вся рота, 100 человек, исполняет команду.). На графике прямая зависимости эффекта от мощности взлетит вертикально вверх, от 0 до 100 ед. Если командир вооружится громкоговорителем и увеличит силу звука на порядок (в 10 раз), два порядка (в 100 раз), три порядка (в 1000 раз), что изменится? Прямая на графике переломится под прямым же углом и поползет параллельно горизонтальной координатной оси вправо, образуя «плато» и подтверждая: эффект не растет от увеличения мощности, достиг насыщения. Как выполняла команду вся рота, так все 100 человек ее и выполняют. Горизонтальное «плато», подпертое слева взметнувшейся был вверх вертикальной прямой и образуют «ступеньку» по мощности, подтверждающую, как утверждают специалисты, информационный характер воздействия.

Имеется в нашем примере и порог по времени. Человек сообразительнее микроба, но и ему нужно 1, 2, 3 секунды, чтобы решить, где у него правый или левый бок. Опытный командир всегда делит команду на две части, информационную «налее...» или «напраа...» и, через паузу, сигнальную «во!». Пусть крошечный, но порог по времени здесь есть.

Спросят: «А не слишком много берет на себя автор, уподобляя нас, людей, первым попавшимся биообъектам? Разве могут, разве посмеют крысы, а тем более микробы, понимать команды? Современная наука не способна…» и так далее.

Еще как могут, еще как посмеют. Есть ученые, всерьез утверждающие, что некоторые точно не кончавшие университетов биообъекты (не импортные, наши советские) понимают иностранные языки, например, лучше большинства наших же советских людей. Дикое утверждение это считают достоверным и экспериментально доказанным. Причем доказывали его не дома на кухне, а в профильных исследовательских институтах Российской Академии наук (Институте Общей Генетики РАН, например). Но об этом ниже.

Желающих получить более строгое и точное обоснование  информационного характера действия миллиметровых волн  на биологические объекты, отсылаем к приложению 3, где изложено аргументированное мнение по данному вопросу основоположников проблемы, Н.Д.Девяткова, М.Б.Голанта, О.В.Бецкого.

 

Добавить комментарий

Г.А.Кравков

ПОСЛЕСЛОВИЕ

Текст брошюры (краткий обзор и три приложения к нему), не защищены авторским правом и свободны для воспроизведения в любых формах. Каждый может, не присваивая авторства, не меняя содержания и сохраняя …

Покушение на В.А.Ющенко.

Не только в кровеносных ссудах, но и в тканевых капиллярах, по которым движется лимфатическая жидкость, возможно возбуждение капиллярного эффекта микроволнами. Разница в гидростатическом давлении – ок. 3 мм рт. ст. …

Дубровка

Об успешном штурме театрального центра на Дубровке я узнал 26 октября 2002 г. Из здания центра начали возвращаться посетившие его журналисты, по радио транслировались их впечатления. Рассказ одного уже в …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.