Financial Econometrics and Empirical Market Microstructure

. The Risk Factors Evolution Model

To describe this evolution, the following AR(1)-GARCH(1,1) model (Posedel 2005) is applied for each risk factor:

rt = д C mr,_i + £

£t = atS,

Подпись: .2Подпись: -2 't _1 a,2 = ! C Pi£:_1 C «ia,

where rt—return at time t, д—basic value of return, £—model error, which is decomposed to St—stochastic component and at—conditional standard deviation at time t, ! —basic value of at.

The stochastic component of error St is often considered as a simple random variable with standard normal distribution. However from empirical data one can clearly see that this cannot be true, because it’s distribution usually has heavy tails.

In this paper we use Pareto distribution from extreme value theory to simulate this feature in the following way:

• The AR-GARCH model fitted onto historical returns gives historical values for it;

• Historical data on St allows to build its distribution;

• The modeled distribution of St used for the AR-GARCH forecast. Distribution St was constructed in the following way:

image054

The central part of the density curve obtained with univariate kernel density estimator in the form:

where Xi—sample, K—smoothing kernel (function which satisfies / K(x)dx = 1), h—bandwidth parameter.

image055

Here we used Gaussian kernel:

where P—scaling, 1/£—tail index.

image056

Fig. 1 Returns simulated by the AR(1)-GARCH(1,1) model (fitted onto the second half of 2008): black line—historical data, red line—simulated data (starts with 15th of May)

image057

Fig. 2 Returns simulated by the AR(1)-GARCH(1,1) model (fitted onto the first half of 2013): black line—historical data, red line—simulated data (starts with 15th of May)

image058

Fig. 3 Prices simulated by the AR(1)-GARCH(1,1) model (fitted onto the second half of 2008): black line—historical data, red line—simulated data (starts with 15th of May)

The proposed evolution model was applied to two historical periods:

1. Second half of 2008 (crisis conditions);

2. First half of 2013 (stable conditions).

Samples of returns and price dynamics forecast by this model are shown in Figs. 1, 2, 3, and 4. One can see that it catches the volatility clustering effect and correctly transfers initial the historical market conditions to the forecast period.

image059

Fig. 4 Prices simulated by the AR(1)-GARCH(1,1) model (fitted onto the first half of 2013): black line—historical data, red line—simulated data (starts with 15th of May)

Table 1 t-copula parameter estimation (second half of 2008), number of freedom degrees = 5

HYDR

GAZP

GMKN

LKOH

ROSN

SBER

SBERP

SNGS

URKA

VTBR

HYDR

1.00

0.58

1.00

0.99

1.00

0.71

1.00

0.75

1.00

1.00

GAZP

0.58

1.00

0.55

0.54

0.55

0.87

0.55

0.81

0.55

0.55

GMKN

1.00

0.55

1.00

0.99

1.00

0.68

1.00

0.73

1.00

1.00

LKOH

0.99

0.54

0.99

1.00

0.99

0.67

1.00

0.72

0.99

0.99

ROSN

1.00

0.55

1.00

0.99

1.00

0.68

1.00

0.73

1.00

1.00

SBER

0.71

0.87

0.68

0.67

0.68

1.00

0.68

0.94

0.68

0.69

SBERP

1.00

0.55

1.00

1.00

1.00

0.68

1.00

0.72

1.00

1.00

SNGS

0.75

0.81

0.73

0.72

0.73

0.94

0.72

1.00

0.73

0.73

URKA

1.00

0.55

1.00

0.99

1.00

0.68

1.00

0.73

1.00

1.00

VTBR

1.00

0.55

1.00

0.99

1.00

0.69

1.00

0.73

1.00

1.00

Добавить комментарий

Financial Econometrics and Empirical Market Microstructure

Modeling Financial Market Using Percolation Theory

Anastasiya Byachkova and Artem Simonov Abstract Econophysics is a relatively new discipline. It is one of the most interesting and promising trends in modeling complex economic systems such as financial …

Multifractal Formalism for Stochastic Processes

Original definition of fractal was proposed by Mandelbrot with respect to sets. He defined fractal as a mathematical set with fractal dimension is strictly larger than its topological dimension (Mandelbrot …

Adaptive Learning

Risk management is a core discipline in a rapidly changing world. From finance to ecology, we face unprecedented systemic risks from increasingly coupled global systems. Non-linearities render long term predictions …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.