First simulation results of a solar tower plant
Various specialized computer codes exist which are used for layout calculations and performance prediction of such solar power plant. For the solar field layout the software code WinDelsol is used, which allows the evaluation of the optimized heliostat arrangement and calculates the flux distribution on the receiver. Such results are used as input for the developed model under the MATLAB/Simulink environment. With the use of measured weather data (ambient temperature, direct normal irradiation) a realistic estimation of the annual plant performance is possible for a chosen location.
First simulation results with the model for the plant in Juelich for one day for the output power of the receiver Prec and the gas temperature at the boiler inlet are presented in Fig. 5. The chosen day was a clear summer day in Juelich with high solar concentrated radiation reaching the absorber (Fig. 5). The
temperature after the receiver rises at the beginning of the day and reaches the operation value. A control of the mass flow is been considered for a solar only operation without any storage.
Calculations of solar tower plants can be done with numerical procedures. The first results of the simulation analysis show that the created model library is a solid basis for the description of the components of the power block. The created component library will be developed further in order to describe the hybrid operation of the plant in Juelich. A future aim is to simulate the annual energy production of the solar tower plant with a gas turbine or a burner for different sizes and sides.
[1] Schwarzboezl P.: A TRNSYS Model Library for Solar Thermal Electric Components (STEC). Reference Manual. Release 3.0, November 2006.; available at: http://sel. me. wisc. edu/trnsys/trnlib/stec/stec. htm
[2] B. Hoffschmidt, G. Dibowski, M: Beuter, V. Fernandez, F. Tellez, et al.: TEST RESULTS OF A 3 MW SOLAR OPEN VOLUMETRIC RECEIVER. ISES Solar World Congress 2003, Goteburg, 14.-19. 06.2003, ISES, (2003)
[3] B. Hoffschmidt, P. Schwarzbozl, G. Koll, F. V. Quero: Design of the PS10 Solar Tower Power Plant. ISES Solar World Congress 2003, Goteburg, 14.-19. 06.2003, ISES, (2003)
[4] P. Schwarzboezl, R. Buck, C. Sugarmen, A. Ring, J. M. Crespo, P. Altwegg, J. Enrile Solar gas turbine systems: Design, cost and perspectives Solar Energy 80 (2006) 1231-1240
[5] K. Hennecke, P. Schwarzbozl, S. Alexopoulos, J. Gottsche, B. Hoffschmidt, M. Beuter, G. Koll, T. Hartz: SOLAR POWER TOWER JULICH The first test and demonstration plant for open volumetric receiver technology in Germany, Proceedings of the 14th Biennial CSP SolarPACES Symposium, Las Vegas, Nevada, 4-7 March 2008
[6] MATLAB/Simulink Manual, http://www. mathworks. com
[7] K. Hennecke, P. Schwarzbozl, B. Hoffschmidt, J. Gottsche, G. Koll, M. Beuter, T. Hartz (2007): The solar power tower Julich a solar thermal power plant for test and demonstration of air receiver. In: Goswami, Yogi; Zhao, Yuwen [Hrsg.]: 2007 ISES Solar World Congress, Beijing, Springer Verlag, S. 1749 - 1753, ISES Solar World Congress, Beijing, China, 2007-09-18 - 2007-09-21