ДОМАШНИЙ СЛЕСАРЬ

Сверла, их конструкция и назначение

По конструкции и назначению сверла подразде­ляются на ряд видов: спиральные и специальные (перовые или плоские, для кольцевого сверления, ружейные, комбинированные с другими инструмен­тами, центровочные И Др.).

Для сверления отверстий чаще применяют спи­ральные сверла и реже специальные.

Сверла перовые представляют собой простой ре­жущий инструмент (рис. 94, а). Они применяются глав­ным образом в трещотках и ручных дрелях для свер­ления неответственных отверстий диаметром до 25 мм.

Сверла спиральные с цилиндрическим и коничес­ким хвостовиками (рис. 94, б, в) используются как для ручного сверления, так и при работе на станках (сверлильных, револьверных и др.).

Сверла для глубокого сверления используются на специальных станках для получения точных отверстий малого диаметра. Под глубоким сверлением обычно понимают сверление отверстий, длина которых пре­вышает их диаметр в 5 и более раз.

Центровые сверла (рис. 94, г) служат для получе­ния центровых углублений на обрабатываемых дета­лях.

Сверла комбинированные позволяют производить одновременную обработку одноосных отверстий (рис. 94, д), а также для одновременного сверления и зен - кования или развертывания отверстий (рис. 94, ё).

Для изготовления сверл, как правило, применя­ют следующие инструментальные материалы: углеро­дистую инструментальную сталь марок У10А и У12А, легированные стали: хромистую марки 9Х и хромок­ремнистую 9ХС; быстрорежущую сталь марок Р9 и

Сверла, их конструкция и назначение

Рис. 94. Различные конструкции сверл

Щ

Спинка

Ленточка

Канавка

Сверла, их конструкция и назначение

Лапка

 

Канавка

 

Шейка

Хвостовик

 

Зуб

 

Режущая часть

Рабочая часть

 

Задняя поверхность ^ Ленточка

 

Сердцевина Канавка

Главные режущие кромки

 

Спинка зуба 'Передняя поверхность ' Поперечная кромка

 

Сверла, их конструкция и назначение Сверла, их конструкция и назначение Сверла, их конструкция и назначение

Рис. 95. Элементы спирального сверла

Р18, а также металлокерамические твердые сплавы марок ВК6, ВК8 и Т15К6.

Сверла из быстрорежущих сталей делают сварны­ми: рабочую часть — из быстрорежущей стали, а ос­тальную часть — из менее дорогой конструкционной стали. Наиболее распространенными являются спи­ральные сверла из быстрорежущих сталей.

Элементы и геометрические параметры спираль­ного сверла. Спиральное сверло имеет рабочую часть, шейку, хвостовик для крепления сверла в шпинделе станка и лапку, служащую упором при выбивании сверла из гнезда шпинделя (рис. 95, а). Рабочая часть, в свою очередь, разделяется на режущую и направ­ляющую.

Основной для процесса резания является режу­щая часть, на которой расположены все режущие элементы сверла. Она состоит из двух зубьев (перь­ев), образованных двумя канавками для отвода стружки (рис. 95, б); перемычки (сердцевины) — средней части сверла, соединяющей оба зуба (пера); двух передних поверхностей, по которым сбегает
стружка, и двух задних поверхностей; двух ленточек, служащих для направления сверла и уменьшения его трения а стенки отверстия; двух главных режущих кромок, образованных пересечением передних и зад­них поверхностей и выполняющих основную работу резания; поперечной кромки (перемычки), образо­ванной пересечением обеих задних поверхностей. На наружной поверхности сверла между краем ленточ­ки и канавкой расположена идущая по винтовой линии несколько углубленная часть, называемая спинкой зуба.

Уменьшение трения сверла о стенки просверли­ваемого отверстия достигается также тем, что рабо­чая часть сверла имеет обратный конус, т. е. диаметр сверла у режущей части больше, чем на другом кон­це, у хвостовика. Разность в величине этих диамет­ров составляет 0,03—0,12 мм на каждые 100 мм дли­ны сверла.

У сверл, оснащенных пластинками твердых спла­вов, обратная конусность принимается от 0,1 до 0,3 мм на каждые 100 мм длины.

К геометрическим параметрам режущей части сверла (рис. 96) относятся: угол при вершине свер­ла, угол наклона винтовой канавки, передний и зад­ний углы, угол наклона поперечной кромки (пере­мычки).

Угол при вершине сверла 2ф расположен между главными режущими кромками. Он оказывает боль­шое влияние на работу сверла. Величина этого угла выбирается в зависимости от твердости обрабатыва­емого материала и колеблется в пределах от 80 до 140°; для сталей, чугунов и твердых бронз 2ср = 116— 118°, для латуней и мягких бронз 2(р = 130°; для лег­ких сплавов дуралюмина, силумин, электрона и баб­бита 2ф = 140°; для красной меди 2ср = 125°; для эбонита и целлулоида 2<р = 80—90°.

Сверла, их конструкция и назначение

Сверла, их конструкция и назначениеРис. 96. Геометрические параметры спирального сверла

В целях повышения стойкости сверл диаметром от 12 мм и выше применяют двойную заточку сверл; при этом главные режущие кромки имеют форму не пря­мой, Как при обычной заточке (рис. 96, а), а ломаной линии (рис. 96, б). Основной угол 2ф = 116—118° (для сталей и чугунов), а второй угол 2ф = 70—75°

Угол наклона винтовой канавки обозначается гре­ческой буквой со (омега) (рис. 96, а). С увеличением этого угла процесс резания облегчается, улучшается выход стружки. Однако сверло (особенно малого ди­аметра) с увеличением угла наклона винтовой ка­навки ослабляется. Поэтому у сверл малого диаметра этот угол делается меньшим, чем у сверл большого диаметра.

Угол наклона винтовой канавки должен выбирать­ся в зависимости от свойств обрабатываемого метал­ла. Для обработки, например, красной меди и алю­миния этот угол нужно делать равным 35—40° а для обработки стали со = 25° и меньше.

Если рассечь спиральное сверло плоскостью, пер­пендикулярной главной режущей кромке, то мы уви­дим передний угол у (см. рис. 96, в, сечение Б—Б).

Передний угол у (гамма) в разных точках режу­щей кромки имеет разную величину: он больше у периферии сверла и заметно меньше у его оси. Так, если у наружного диаметра передний угол у = 25— 30°, то у перемычки он близок к 0° Непостоянство величины переднего угла относится к недостаткам спирального сверла и является одной из причин не­равномерного и быстрого его износа.

Задний угол сверла а (альфа) предусмотрен для уменьшения трения задней поверхности о поверхность резания. Этот угол рассматривается в плоскости А— А, параллельной оси сверла (рис. 96, в). Величина зад­него угла также изменяется по направлению от пе­риферии к центру сверла: у периферии он равен 8— 12°, а у оси а = 20—26°

Угол наклона поперечной кромки у (пси) для сверл диаметром от 1 до 12 мм колеблется от 47 до 50° (рис. 96, в), а для сверл диаметром свыше 12 мм V = 55°

А

-4^5=^»=^--------------- !• •ф-

подпись: а
-4^5=^»=^ !• •ф-
Сверла, их конструкция и назначение

Г

Рис. 97. Геометрические параметры спирального сверла

подпись: г
 
рис. 97. геометрические параметры спирального сверла
Сверла, ос­нащенные плас­тинками твердых сплавов, по сравнению со сверлами, изго­товленными из сталей, имеют меньшую длину рабочей части, больший диа­метр сердцевины и меньший угол наклона винто­вой канавки. Эти сверла обладают высокой стойко­
стью и обеспечивают более высокую производитель­ность. Особенно эффективно применение сверл с пла­стинками твердых сплавов при сверлении и рас­сверливании чугуна, твердой стали, пластмасс, стек­ла, мрамора и других твердых материалов.

Сверла, оснащенные пластинками твердых спла­вов, выпускаются четырех типов: спиральные с ци­линдрическим хвостовиком (рис. 97, а); спиральные с коническим хвостовиком (рис. 97, б), с прямыми канавками и коническим хвостовиком (рис. 97, в) и с косыми канавками и цилиндрическим хвостовиком (рис. 97, г).

Процесс резания при сверлении

В процессе сверления под влиянием силы резания режущие поверхности сверла сжимают прилегающие к ним частицы металла. Когда давление, создаваемое сверлом, превышает силы сцепления частиц метал­ла, происходит отделение и образование элементов стружки.

При сверлении вязких металлов (сталь, медь, алю­миний и др.) отдельные элементы стружки, плотно сцепляясь между собой, образуют непрерывную стружку, завивающуюся в спираль. Такая стружка называется сливной. Если обрабатываемый металл хру­пок, как, например, чугун или бронза, то отдель­ные элементы стружки надламываются и отделяются друг от друга. Такая стружка, состоящая из отдель­ных разобщенных между собой элементов (чешуек) неправильной формы, носит название стружки над­лома.

В процессе сверления различаются следующие эле­менты резания: скорость резания, глубина резания, подача, толщина и ширина стружки (рис. 98).

Рис. 98. Элементы резания: а — при сверлении; б — при рассверливании

Главное рабочее движение сверла (вращательное) характеризуется скоростью резания.

Скорость резания — это путь, проходимый в на­правлении главного движения наиболее удаленной от оси инструмента точкой режущей кромки в единицу времени. Принято скорость резания обозначать латин­ской буквой V и измерять в метрах в минуту. Если известны число оборотов сверла и его диаметр, не­трудно определить скорость резания. Она подсчиты­вается по общеизвестной формуле

Пйп

V = -|00- м/мин

Где О — диаметр инструмента (сверла) в мм; п — число оборотов сверла в минуту; я — постоянное число, примерно равное 3,14. Если известны диаметр сверла и скорость резания, то число оборотов п мож­но вычислить по формуле

100у _

П = —— обмин тЮ

Подачей при сверлении называется перемещение сверла вдоль оси за один его оборот. Она обозначает­ся через 50 и измеряется в ии/об. Сверло имеет две главные режущие кромки. Следовательно, величина подачи на одну режущую кромку вычисляется по формуле

* =т

Правильный выбор подачи имеет большое значе­ние для увеличения стойкости инструмента. Величи­на подачи при сверлении и рассверливании зависит от заданной чистоты и точности обработки, твердо­сти обрабатываемого материала и прочности сверла.

Глубиной резания / при сверлении отверстий яв­ляется расстояние от стенки отверстия до оси сверла (т. е. радиус сверла). Определяется глубина резания пу­тем деления диаметра просверливаемого отверстия пополам.

При рассверливании (рис. 98, б) глубина резания / определяется как половина разности между диамет­ром - О сверла и диаметром с1 ранее обработанного отверстия.

Толщина среза (стружки) а измеряется в направ­лении, перпендикулярном режущей кромке сверла. Ширина среза в измеряется вдоль режущей кромки и равна ее длине (рис. 98, а).

Площадь поперечного сечения стружки /, срезае­мая обеими режущими кромками сверла, определя­ется по формуле:

/ = 5о/ ММ2,

Где 5о — подача в мм/об; t — глубина резания в мм.

Таким образом, площадь поперечного сечения стружки становится больше с увеличением диамет­ра сверла, а для данного сверла — с увеличением подачи.

Обрабатываемый материал оказывает сопротивле­ние резанию и удалению стружки. Для осуществле­ния процесса резания к инструменту должны быть приложены сила подачи Р0, превосходящая силы со­противления материала осевому перемещению свер­ла, и крутящий момент Мкр, необходимый для пре­одоления момента сопротивления М и для обеспече­ния главного вращательного движения шпинделя и сверла.

Сила подачи Ро при сверлении и крутящий мо­мент зависят от диаметра сверла Д величины пода­чи и свойств обрабатываемого материала: например, при увеличении диаметра сверла и подачи они также увеличиваются.

Мощность, необходимая для резания при сверле­нии и рассверливании, складывается из мощности, потребляемой на вращение инструмента, и мощнос­ти, потребляемой на подачу инструмента. Однако мощность, необходимая для подачи сверла, чрезвы­чайно мала по сравнению о мощностью, расходуе­мой на вращение сверла в процессе резания, и для практических целей ее можно не учитывать.

Стойкостью сверла называется время его непре­рывной (машинной) работы до затупления, т. е. меж­ду двумя переточками. Стойкость сверла обычно из­меряется в минутах. На стойкость сверла влияют свой­ства обрабатываемого материала, материал сверла, углы заточки и форма режущих кромок, скорость резания, сечение стружки и охлаждение.

Увеличение твердости обрабатываемого материа­ла понижает стойкость сверла. Объясняется это тем, что твердый материал оказывает большее сопротив­ление сверлению; при этом возрастают сила трения и количество выделяемого тепла.

На стойкость сверла оказывают влияние также и его размеры: чем массивнее сверло, тем лучше отво­дит оно тепло от режущих кромок и, следовательно, тем больше его стойкость. Стойкость сверла значи­тельно возрастает при его охлаждении.

В процессе резания при сверлении выделяется большое количество тепла вследствие деформации металла, трения выходящей по канавкам сверла стружки, трения задней поверхности сверла об об­рабатываемую поверхность и т. п. Основная часть тепла уносится стружкой, а остальная распреде­ляется между деталью и инструментом. Для пре­дохранения от затупления и преждевременного износа при нагреве сверла в процессе резания применяют смазывающе-охлаждающую жидкость, которая отводит тепло от стружки, детали и инст­румента.

Смазочно-охлаждающая жидкость, смазывая тру­щиеся поверхности инструмента и детали, значитель­но уменьшает трение и облегчает тем самым про­цесс резания. При работе сверлами из ин­струментальных сталей смазывающе-охлаждающие жидкости применяются в процессе сверления сталей, стального литья, цветных металлов и сплавов, а так­же частично чутунов. Обычно подача жидкости про­изводится на переднюю поверхность режущего ин­струмента, в зону стружкообразования, в обильном количестве.

К охлаждающим жидкостям, которыми пользуются при сверлении металлов, относятся мыльная и содо­вая вода, масляные эмульсии и др.

Выбор режимов резания при сверлении заклю­чается в определении такой подачи и скорости ре­зания, при которых процесс сверления детали ока­зывается наиболее производительным и эконо­мичным.

ДОМАШНИЙ СЛЕСАРЬ

Как Слить Воду из Стиральной Машины | Советы Мастеров

После загрузки белья машинка стирала, но затем прекратила свою работу? Не паникуйте. Она могла сломаться, поэтому обязательно слить воду и разобраться, что стало причиной ее остановки.

Лестница для дома: как правильно выбрать?

На лестницу, как правило, воздействуют нагрузки в плане как эстетичности, так и функциональности. То, где конкретно в доме расположена лестница, каким типом она является и взяты ли во внимание особенности …

Как правильно уложить паркетную доску

Итак, вы приобрели массивную доску для покрытия пола, теперь следует ознакомиться с способами ее укладки на пол. Ведь правильно уложенная массивная доска обеспечит вам красивый и надежный пол на долгое …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.