Процесс резания при сверлении
В процессе сверления под влиянием силы резания режущие поверхности сверла сжимают прилегающие к ним частицы металла. Когда давление, создаваемое сверлом, превышает силы сцепления частиц металла, происходит отделение и образование элементов стружки.
При сверлении вязких металлов (сталь, медь, алюминий и др.) отдельные элементы стружки, плотно сцепляясь между собой, образуют непрерывную стружку, завивающуюся в спираль. Такая стружка называется сливной. Если обрабатываемый металл хрупок, как, например, чугун или бронза, то отдельные элементы стружки надламываются и отделяются друг от друга. Такая стружка, состоящая из отдельных разобщенных между собой элементов (чешуек) неправильной формы, носит название стружки надлома.
В процессе сверления различаются следующие элементы резания: скорость резания, глубина резания, подача, толщина и ширина стружки (рис. 98).
Рис. 98. Элементы резания: а — при сверлении; б — при рассверливании
Главное рабочее движение сверла (вращательное) характеризуется скоростью резания.
Скорость резания — это путь, проходимый в направлении главного движения наиболее удаленной от оси инструмента точкой режущей кромки в единицу времени. Принято скорость резания обозначать латинской буквой V и измерять в метрах в минуту. Если известны число оборотов сверла и его диаметр, нетрудно определить скорость резания. Она подсчитывается по общеизвестной формуле
Пйп
V = -|00- м/мин
Где О — диаметр инструмента (сверла) в мм; п — число оборотов сверла в минуту; я — постоянное число, примерно равное 3,14. Если известны диаметр сверла и скорость резания, то число оборотов п можно вычислить по формуле
100у _
П = —— обмин тЮ
Подачей при сверлении называется перемещение сверла вдоль оси за один его оборот. Она обозначается через 50 и измеряется в ии/об. Сверло имеет две главные режущие кромки. Следовательно, величина подачи на одну режущую кромку вычисляется по формуле
5о
Правильный выбор подачи имеет большое значение для увеличения стойкости инструмента. Величина подачи при сверлении и рассверливании зависит от заданной чистоты и точности обработки, твердости обрабатываемого материала и прочности сверла.
Глубиной резания / при сверлении отверстий является расстояние от стенки отверстия до оси сверла (т. е. радиус сверла). Определяется глубина резания путем деления диаметра просверливаемого отверстия пополам.
При рассверливании (рис. 98, б) глубина резания / определяется как половина разности между диаметром - О сверла и диаметром с1 ранее обработанного отверстия.
Толщина среза (стружки) а измеряется в направлении, перпендикулярном режущей кромке сверла. Ширина среза в измеряется вдоль режущей кромки и равна ее длине (рис. 98, а).
Площадь поперечного сечения стружки /, срезаемая обеими режущими кромками сверла, определяется по формуле:
/ = 5о/ ММ2,
Где 5о — подача в мм/об; t — глубина резания в мм.
Таким образом, площадь поперечного сечения стружки становится больше с увеличением диаметра сверла, а для данного сверла — с увеличением подачи.
Обрабатываемый материал оказывает сопротивление резанию и удалению стружки. Для осуществления процесса резания к инструменту должны быть приложены сила подачи Р0, превосходящая силы сопротивления материала осевому перемещению сверла, и крутящий момент Мкр, необходимый для преодоления момента сопротивления М и для обеспечения главного вращательного движения шпинделя и сверла.
Сила подачи Ро при сверлении и крутящий момент зависят от диаметра сверла Д величины подачи и свойств обрабатываемого материала: например, при увеличении диаметра сверла и подачи они также увеличиваются.
Мощность, необходимая для резания при сверлении и рассверливании, складывается из мощности, потребляемой на вращение инструмента, и мощности, потребляемой на подачу инструмента. Однако мощность, необходимая для подачи сверла, чрезвычайно мала по сравнению о мощностью, расходуемой на вращение сверла в процессе резания, и для практических целей ее можно не учитывать.
Стойкостью сверла называется время его непрерывной (машинной) работы до затупления, т. е. между двумя переточками. Стойкость сверла обычно измеряется в минутах. На стойкость сверла влияют свойства обрабатываемого материала, материал сверла, углы заточки и форма режущих кромок, скорость резания, сечение стружки и охлаждение.
Увеличение твердости обрабатываемого материала понижает стойкость сверла. Объясняется это тем, что твердый материал оказывает большее сопротивление сверлению; при этом возрастают сила трения и количество выделяемого тепла.
На стойкость сверла оказывают влияние также и его размеры: чем массивнее сверло, тем лучше отводит оно тепло от режущих кромок и, следовательно, тем больше его стойкость. Стойкость сверла значительно возрастает при его охлаждении.
В процессе резания при сверлении выделяется большое количество тепла вследствие деформации металла, трения выходящей по канавкам сверла стружки, трения задней поверхности сверла об обрабатываемую поверхность и т. п. Основная часть тепла уносится стружкой, а остальная распределяется между деталью и инструментом. Для предохранения от затупления и преждевременного износа при нагреве сверла в процессе резания применяют смазывающе-охлаждающую жидкость, которая отводит тепло от стружки, детали и инструмента.
Смазочно-охлаждающая жидкость, смазывая трущиеся поверхности инструмента и детали, значительно уменьшает трение и облегчает тем самым процесс резания. При работе сверлами из инструментальных сталей смазывающе-охлаждающие жидкости применяются в процессе сверления сталей, стального литья, цветных металлов и сплавов, а также частично чутунов. Обычно подача жидкости производится на переднюю поверхность режущего инструмента, в зону стружкообразования, в обильном количестве.
К охлаждающим жидкостям, которыми пользуются при сверлении металлов, относятся мыльная и содовая вода, масляные эмульсии и др.
Выбор режимов резания при сверлении заключается в определении такой подачи и скорости резания, при которых процесс сверления детали оказывается наиболее производительным и экономичным.