ЧАСТОТНОЕ УПРАВЛЕНИЕ АСИНХРОННЫМИ ДВИГАТЕЛЯМИ
Модуляцией напряжения
Простейшим режимом ШИР является режим формирования синусоидальных ШИМ напряжений в обмотках АД в соответствии с сигналами задания. На рис. 2.34 а) показана функциональная схема инвертора ПЧ, к выходу которого подключен статор АД. Управление четными и нечетными ключами полумосто - вых пар производится парафазно, для чего в каналы управления четных ключей включены инверторы логических функций. Логический сигнал управления ключами формируется компараторами (К), на входы которых подаются синусоидальные сигналы заданных фазных напряжений ии; u]h: и]( и сигнал линейной развертки us с выхода генератора пилообразного сигнала (ГПС). Компараторы на рисунке выполняют математическую функцию определения знака разности сигналов ик = sign (ц - us), где ик - сигнал на выходе компаратора. На выходах компараторов фазных сигналов показаны двухпозиционные реле с гистерезисом. Наличие гистерезиса необходимо для исключения «дребезга» при переключении компаратора, но обычно гистерезис вводится просто с помощью положительной обратной связи по напряжению охватывающей компаратор.
Если мгновенное значение сигнала задания ц превышает значение сигнала развертки us, то выключается соответствующий нечетный ключ и включается четный. При этом обмотка АД оказывается подсоединенной к отрицательному полюсу источника постоянного тока, питающего инвертор. В случае противоположного соотношения сигналов задания и развертки обмотка подключается к положительному полюсу источника. В результате фазное напряжение статора АД ц формируется из прямоугольных импульсов с частотой равной частоте сиг-
нала развертки us и средним значением, равным среднему значению сигнала задания ц в пределах периода развертки. При этом первая гармоника фазного напряжения совпадает по фазе и амплитуда ее пропорциональна амплитуде сигнала задания.
Фазный ток ix в межкоммутационных интервалах формируется из участков экспонент. При этом в цепи фазной обмотки действует разность напряжения формируемого инвертором ц и ЭДС ротора uw (см. рис. 1.23). Если частота сигнала развертки на порядок и более превышает частоту сигнала задания то кривая тока имеет спектр, состоящий более чем на 99% из основной гармоники im.
і у |
Следует заметить, что рисунок б) поясняющий принцип работы ШИР, соответствует работе однофазной мостовой схемы инвертора. При работе трехфазного инвертора (рис. 2.34 а) на каждом интервале коммутации две обмотки соединяются параллельно и подключаются последовательно с третьей обмоткой. Если же одновременно замыкаются три четных или нечетных ключа, то все три обмотки оказываются соединенными параллельно и отключенными от напряжения источника питания Ud,. Таким образом, в фазных напряжениях появляются интервалы с нулевым входным напряжением. Это усложняет картину процессов в ШИР, но практически не сказывается на спектре токов в обмотках, если, как уже отмечалось выше, частота коммутации более чем на порядок превышает частоту основной гармоники. В этом случае при анализе можно заменить ШИП линейным источником синусоидального напряжения, не внося при этом погрешности более 2-3%.
Очевидно, что приведенная на рисунке структура устройства управления ключами инвертора может быть реализована и в настоящее время чаще всего реализуется с помощью цифровой обработки информации микроконтроллером.
Структурная схема модели, соответствующей описанному процессу приведена на рис. 2.35 б). Здесь сохранение знака ошибки регистром на период тактовых импульсов показано звеном, соответствующим аналого-цифровому преобразованию среднего значения с постоянной тактовой частотой - (1 - ерТ) / р.
Если различное отклонение формируемого тока от заданного значения нежелательно, то применяет ІІІИР. работающий в режиме «токового коридора» (рис. 2.36). Здесь сигналы управления ключами формируются двухпозиционными реле с гистерезисом, на вход которых подаются сигналы ошибки формирования фазного тока.
Изменение состояния реле происходит в том случае, если ошибка станет равной или больше заданного значения гистерезиса А. При этом состояние - іх< - А будет приводить к замыканию соответствующего нечетного ключа и следующего за этим возрастания тока в обмотке, а состояние > А - к замыка
нию четного ключа и уменьшению тока. Таким образом, среднее значение фазного тока будет в точности соответствовать заданному с ошибкой ±А, определяемой величиной гистерезиса релейного элемента (рис. 2.36 в).
Рис. 2.36. Функциональная схема (а), структура модели (б) и временные диаграммы (в) усилителя мощности типа «токового коридора». |
Такое устройство называют также релейным усилителем мощности.
в) |
В отличие от формирователя с постоянной тактовой частотой, здесь интервалы между коммутациями отличаются друг от друга.
Это связано с тем, что изменения
тока под влиянием различных уровней ЭДС ротора на разных участках основной гармоники происходят с различной скоростью.
Таким образом, формирователь типа токового коридора обеспечивает работу с постоянной ошибкой формирования и переменной частотой коммутации, а формирователь с постоянной тактовой частотой - работу с переменной ошибкой формирования. Выбор типа формирователя определяется поставленной задачей, но переменная частота коммутации усложняет задачу выбора мощности преобразователя, т. к. именно этот параметр существенно влияет на величину потерь в ШИП. Увеличение частоты приводит к росту коммутационных потерь и требует увеличения мощности ПЧ.
Следует заметить, что рассмотренные выше структурные схемы и процессы работы формирователей тока соответствуют однофазной мостовой схеме инвертора с фазной обмоткой статора, подключенной к его выходу. В трехфазном инверторе в зависимости от состояния ключей на различных межкоммутационных интервалах будут действовать напряжения 0; ± Ud/3] ±2Ud/3. Это существенно усложняет анализ процессов в ШИР, но не влияет на основной результат. Если же требуется детальный анализ, то моделирование процессов нужно выполнять с помощью современных математических пакетов программ, позволяющих имитировать алгоритм работы инвертора при различных сигналах управления.