Advanced Econometrics Takeshi Amemiya

Tobit Maximum Likelihood Estimator

The Tobit MLE maximizes the likelihood function (10.2.5). Under the as­sumptions given after (10.2.4), Amemiya (1973c) proved its consistency and asymptotic normality. If we define 0 = (/?', a2)', the asymptotic variance-co­variance matrix of the Tobit MLE 0 is given by

-i-i

Подпись: ve =X X **

Подпись: (10.4.36);-i t-i

X W І c‘

1-1 i-1 J where

а і: = - а 2{хаф, - [ф?/(1 ~ Ф,)] - Ф,},

b, = (/2)а-(х'а)2фі + ф,- Ш/(1 - Ф,)]}, and

q = -(1/4)ст-4{(х'а)3ф, + (х'а)фі - [{х'а)фУ( - Ф,)] - 2Ф,);

and фі and Ф, stand for ф(х,-0£) and Ф(х<а), respectively.

The Tobit MLE must be computed iteratively. Olsen (1978) proved the global concavity of log L in the Tobit model in terms of the transformed parameters a = fit a and h = er’.a result that implies that a standard iterative method such as Newton-Raphson or the method of scoring always converges to the global maximum of log £.® The log L in terms of the new parameters can be written as

Подпись: (10.4.37)log L — 2 log [1 — Ф(х-а)] + Л| log h о

“ r X ~ x<a)2>

Z 1

from which Olsen obtained

Подпись: (10.4.38)d2 log L d log L дада' dadh

Подпись: 2 *<*; - 2 x^«- - 2 У‘х‘ 2 і і

dMog L dMogL dhda' dh2

Because x'a — [1 — Ф(х|а)]-Іф(х[а) < 0, the right-hand side of (10.4.38) is the sum of two negative-definite matrices and hence is negative definite.

Even though convergence is assured by global concavity, it is a good idea to start an iteration with a good estimator because it will improve the speed of convergence. Tobin (1958) used a simple estimator based on a linear approxi­mation of the reciprocal of Mills’ ratio to start his iteration for obtaining the MLE. Although Amemiya (1973c) showed that Tobin’s initial estimator is inconsistent, empirical researchers have found it to be a good starting value for iteration.

Amemiya (1973) proposed the following simple consistent estimator. We have

Е(у}Уі > 0) = (x'tfi)2 + ах'іРЦх'а) + a2. (10.4.39)

Combining (10.4.6) and (10.4.39) yields

E(y2iy, > 0) = х'рЕ(УіУі > 0) + a2, (10.4.40)

which can be alternatively written as

у} = Уіх'іР+ о2 + Сі, for і such that yt > 0, (10.4.41)

where £(С, ІУ/ > 0) = 0. Then consistent estimates of and a2 are obtained by applying an instrumental variables method to (10.4.41) using (ypicj, 1) as the instrumental variables, where pt is the predictor of yt obtained by regressing
positive у і on x, and, perhaps, powers of xf. The asymptotic distribution of the estimator has been given by Amemiya (1973c). A simulation study by Wales and Woodland (1980) indicated that this estimator is rather inefficient.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.