Advanced Econometrics Takeshi Amemiya

The Kelejian and Stephan Model

The RCM analyzed by Kelejian and Stephan (1983) is a slight generalization of Hsiao’s model, which we shall discuss in the next subsection. Their model is defined by

Уі, = + K) + e*. (6-7л)

/=1,2,. . . , N and /=1,2,. . . , T. Note that we have separated out the nonstochastic part ft and the random partju, + A, of the regression coefficients. Using the symbols defined in Section 6.6.1 and two additional symbols, we can write (6.7.1) in vector notation as

у = XP + Хц + X*A + e, (6.7.2)

where we have defined X = diag(X,,X2,. . . , XN), X* = (Xf', XJ',. . . , X%'Y, where X? = diag (xj,, Xq, . . . , x'iT). It is assumed that Ц, A, and є have zero means, are uncorrelated with each other, and have covariance matrices given by Ещі'= IN®2^, ЕЛЛ' = ІГ©ХЛ, and Eee' = 2e, where 2M, 2A, and 2e are all nonsingular.

Kelejian and Stephan were concerned only with the probabilistic order of the GLS estimator of ft—an important and interesting topic previously over­looked in the literature. For this purpose we can assume that 2^, 2д, and 2t are known. We shall discuss the estimation of these parameters in Sections 6.7.2 and 6.7.3, where we shall consider models more specific than model (6.7.1). In these models 2* is specified to depend on a fixed finite number of parameters: most typically, 2* = c^W-

The probabilistic order offiG can be determined by deriving the order of the inverse of its covariance matrix, denoted simply as V. We have

V-^X'IXtfQS^X' + Al^X, (6.7.3)

where Л = Х*(І7-®2я)Х*' + 2е. Using Theorem 20 of Appendix 1, we obtain

[Х(Ідг ® XA)X' + A]-1 (6.7.4)

= A-1 - A^XKIjv® 2;1) + X'A-’XT'X'A-'. Therefore, noting X = X(1jv ® I*) and defining A = Х'Л - ‘X, we have

V"1 = (IlN ® I*)'{A - A[(I„ ®2~') + A]'‘A}(V ® h)- (6.7.5)

Finally, using Theorem 19 (ii) of Appendix 1, we can simplify the (6.7.5) as V-1 = (1* © I*)'® 2,) + A-4-41* ® I*) (6.7.6)

or as

V-1 = NS.;1 - (tw® 2;‘)'[(IW® X;1) + АГЧідг® X;1). (6.7.7)

Equation (6.7.7) is identical with Eq. (11) of Kelejian and Stephan (1983, p. 252).

Now we can determine the order of V-1. If we write the /, j'th block subma­trix of [(1^© 2^)+А]-1, /,У= 1,2,. . . , N, as GiJ, the second term of the right-hand side of (6.7.7) can be written as Therefore

the order of this term is N2/T. Therefore, if T goes to » at a rate equal to or faster than N, the order of V~1 is N. But, because our model is symmetric in / and t, we can conclude that if У goes to 00 at a rate equal to or faster than T, the order of V-1 is T. Combining the two, we can state the order of V-1 is min (N, T) or that the probabilistic order of is max (N~1/2, T~l/2).

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.