Advanced Econometrics Takeshi Amemiya

The Almon Lag

Almon (1965) proposed a distributed-lag model

Подпись: N

yl=='ZPjX,+i-j+v»

1-І

in which 0X. . , 0N lie on the curve of a gth-order polynomial; that is,

/«, j=l,2,...,N. (5.6.6)

,Y and S=(S0,Sl,. . . , Sq)', we

(5.6.7)

The estimation of 6 can be done by the least squares method. Let X be a TXN matrix, the /,jth element of which is Then

6 = (J'X'XJ^'J'X'y and 0 = JS.3 Note that 0 is a special case of the con­strained least squares estimator (1.4.11) where R = J and c = 0.

By choosing N and q judiciously, a researcher can hope to attain both a reasonably flexible distribution of lags and parsimony in the number of pa­rameters to estimate. Amemiya and Morimune (1974) showed that a small order of polynomials {q — 2 or 3) works surprisingly well for many economic time series.

Some researchers prefer to constrain the value of the polynomial to be 0 at j = N+ 1. This amounts to imposing another equation

S0 + 3AN+ 1) + S2(N+ l)2 + . . . + SjiN+ 1)« - 0 (5.6.8)

in addition to (5.6.6). Solving (5.6.8) for S0 and inserting it into the right-hand side of (5.6.7) yields the vector equation

0 = J*S* (5.6.9)

where S* = (S1, S2,. . . , SqY and J* should be appropriately defined.

Exercises

1. (Section 5.2.1)

Prove that model (5.2.1) with Assumptions A, B, and C is equivalent to model (5.2.3) with Assumptions A and B.

2. (Section 5.2.1)

Show that the process defined in the paragraph following Eq. (5.2.5) is AR(1).

3. (Section 5.3)

Find the exact inverse of the variance-covariance matrix of MA( 1) using

(5.3.12) and compare it with the variance-covariance matrix of AR(1).

4. (Section 5.3)

In the MA(1) process defined by (5.3.6), defineyf = ef — p~lef-,, where (ef) are i. i.d. with Eef = 0, Vef = p2a2. Show that the autocovariances of y, and yf are the same.

5. (Section 5.4)

lfX, Y, and Z are jointly normal and if X is independent of either ForZ, then EXYZ = EXEYZ (Anderson, 1958, p. 22). Show by a counterexam­ple that the equality does not in general hold without the normality assumption.

6. (Section 5.4)

Show that 'ІТ (pA — p) and ІТ (pM — p) have the same limit distribution.

7. (Section 5.4)

In the AR(1) process defined by (5.2.1), define the first differences yf = У,~ У,-1 and derive plimr_. 2£.3 yf-, yfl 2£.3 yf-2!.

8. (Section 5.4)

In the AR(2) process defined by (5.2.16), derive plimr_oo E£.2 Уі-іУі/ *Г-2 УЇ-і-

9. (Section 5.5)

Derive (5.5.2) from the general formula of (5.5.5).

10. (Section 5.5)

In the MA(1) process defined by (5.3.6), obtain the optimal predictor of yt+ngiveny„y,-i,- . . .

11. (Section 5.6)

Show that (5.6.7) can be written in the equivalent form Q'fi = 0, where Q is an NX(N— q— 1) matrix such that [Q, J] is nonsingular and Q'J = 0. Find such a Q when N=4 andq = 2.

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.