Advanced Econometrics Takeshi Amemiya

Discrete Observations

In the analysis presented in the preceding three subsections, we assumed that an individual is continuously observed and his or her complete event history during the sample period is provided. However, in many practical situations a researcher may be able to observe the state of an individual only at discrete times. If the observations occur at irregular time intervals, it is probably more

reasonable to assume a continuous-time Markov model rather than a dis­crete-time model.

We shall derive the likelihood function based on discrete observations in the case of M = 2. The underlying model is the same stationary (or exponential) model we have so far considered. We define

P)k(t) = Prob [rth person is in state к at time t (11.2.40)

given that he or she was in state j at time 0].

Note that this definition differs slightly from the definition (11.1.2) of the same symbol used in the Markov chain model. We shall use the definition

(11.2.1) with the stationarity assumption X‘jk{t) — ttjk for all t.

As before, we shall concentrate on a particular individual and suppress the superscript i. When At is sufficiently small, we have approximately

P12(t + At) = Pn(tUi2At + Pl2m - АгіДГ). (11.2.41)

Dividing (11.2.41) by At and letting At go to 0 yield

^ = 21. (П.2.42)

Performing an analogous operation on Pn, P2i, and P22, we obtain the linear vector differential equation

image862

A solution of (11.2.43) can be shown to be6

P' = H^H-i, (11.2.44)

where the columns H are characteristic vectors of Л, D is the diagonal matrix consisting of the characteristic roots of Л, and (P1 is the diagonal matrix consisting of exp (djt), dj being the elements of D.

We shall derive D and H. Solving the determinantal equation

image863 Подпись: 0 1 (Лі2 + A2i )J Подпись: (11.2.46)

yields the two characteristic roots = 0 and d2 = — (A12 + ^21 )• Therefore we have

image866

Let h, be the first column of H (the characteristic vector corresponding to the zero root). Then it should satisfy Ah, = 0, which yields a solution (which is not unique) h, = (A21 , A12)'. Next, the second column h2 of H should satisfy [Л + (Д,2 + A21 )I]h2 = 0, which yields a solution h2 = (— 1, 1)'. Combining the two vectors, we obtain

Finally, inserting (11.2.46) and (11.2.47) into (11.2.44) yields the following expressions for the elements of P' (putting back the superscript /):

P[, (t) = 1 - у, + уt exp (- S/1) (11.2.48)

Г 1г(0 = У/~ Уі e*p (-Stt)

P‘n (0 “ 1 “ У, ~ (1 “ Уt) exp (-Stt)

P22U) = Уі + (1 “ Уд ехР (~Sit),

where у і = А'гДАІг + 4,) and S, = A‘12 + Ц,. Suppose we observe the rth indi­vidual in state jj at time 0 and in state k, at time г,, г = 1, 2,. . . , N. Then the likelihood function is given by

L = f[ptjM - 01-2.49)

1-1

Добавить комментарий

Advanced Econometrics Takeshi Amemiya

Nonlinear Limited Information Maximum Likelihood Estimator

In the preceding section we assumed the model (8.1.1) without specifying the model for Y( or assuming the normality of u, and derived the asymptotic distribution of the class of …

Results of Cosslett: Part II

Cosslett (1981b) summarized results obtained elsewhere, especially from his earlier papers (Cosslett, 1978, 1981a). He also included a numerical evalua­tion of the asymptotic bias and variance of various estimators. We …

Other Examples of Type 3 Tobit Models

Roberts, Maddala, and Enholm (1978) estimated two types of simultaneous equations Tobit models to explain how utility rates are determined. One of their models has a reduced form that is …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.