A COMPANION TO Theoretical Econometrics

Model selection using information criteria

Because the object of point forecasting is to minimize expected loss out-of­sample, it is not desirable to minimize approximation error (bias) when this entails adding considerable parameter estimation uncertainty. Thus, for example, model selection based on minimizing the sum of squared residuals, or maxi­mizing the R2, can lead to small bias and good in-sample fit, but very poor out-of-sample forecast performance.

A formal way to make this tradeoff between approximation error and estima­tion error is to use information criteria to select among a few competing models. When й = 1, information criteria (IC) have the form,

IC(p) = In 6 2(p) + pg(T) (27.3)

where p is the dimension of 0, T is the sample size used for estimation, g(T) is a function of T with g(T) > 0 and Tg(T) ^ ^ and g(T) ^ 0 as T ^ ™, and 6 2(p) = SSR/T, where SSR is the sum of squared residuals from the (in-sample) estima­tion. Comparing two models using the information criterion (27.3) is the same as comparing two models by their sum of squared residuals, except that the model with more parameters receives a penalty. Under suitable conditions on this penalty and on the class of models being considered, it can be shown that a model selected by the information criterion is the best in the sense of the trade­off between approximation error and sampling uncertainty about 0. A precise statement of such conditions in AR models, when only the maximum order is known, can be found in Geweke and Meese (1981), and extensions to infinite order autoregressive models are discussed in Brockwell and Davis (1987) and, in the context of unit root tests, Ng and Perron (1995). The two most common information criteria are the Akaike information criterion (AIC), for which g(T) = 2/T, and Schwarz's (1978) Bayes information criterion (BIC), for which g(T) = ln T/T.

Добавить комментарий

A COMPANION TO Theoretical Econometrics

Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.