A COMPANION TO Theoretical Econometrics

Measurement Error. and Latent Variables

Tom Wansbeek and Erik Meijer*

1 Introduction

Traditionally, an assumption underlying econometric models is that the regres­sors are observed without measurement error. In practice, however, economic observations, micro and macro, are often imprecise (Griliches, 1986). This may be due to clearly identifiable factors. If these are known, we may apply a better measurement procedure on a later occasion. However, it may also be the case that no better procedure is possible, not even in a perfect world. The variable concerned may be a purely mental construct that does not correspond to a vari­able that can, at least in principle, be observed in practice. In fact, quite often economic theorizing involves such latent variables.

Typical examples of latent variables appearing in economic models are utility, the productivity of a worker, permanent income, consumer satisfaction, financial health of a firm, the weather condition in a season, socioeconomic status, or the state of the business cycle. Although we use the epithet "latent" for these vari­ables, we can, for each of these examples, think of related observable variables, so some kind of indirect measurement is possible. In this sense the latency of variables is a generalization of measurement error, where the relation between the observed variable and its true or latent counterpart is just of the simple kind: observed = true + measurement error.

Clearly, many variables economists work with are latent, due to measurement error or intrinsically so. In this chapter, we will discuss the problems that are invoked by the presence of measurement error and latent variables in econo­metric models, possible solutions to these problems, and the opportunities offered by latent variable models. Related references are Aigner, Hsiao, Kapteyn, and Wansbeek (1984), who give an extensive overview of latent variable models, and Fuller (1987) and Cheng and Van Ness (1999), which are book-length treatments of measurement error models.

Добавить комментарий

A COMPANION TO Theoretical Econometrics

Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

Как с нами связаться:

тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: inna@msd.com.ua

За услуги или товары возможен прием платежей Онпай: Платежи ОнПай