A COMPANION TO Theoretical Econometrics

Maximum likelihood estimation

An n x 1 vector y generated by the linear regression model (3.12) with an ARMA(p, q) disturbance process with normal errors, i. e. et ~ IN(0, a2), can be shown to be distributed as

y ~ N(XP, a2Q(p, у)) (3.22)

where a2Q(p, y) is the covariance matrix of the ARMA(p, q) process in which p = (p1,..., pp)' and y = (Y1,..., Yq)' are parameter vectors. The loglikelihood function of this model is

n 1

№ a^ ^ Yly) = - 2 log (2na2) - 2 logl °(p' Y)l 1

- ^(y - XP)'Q(P, Y)-1(y - XP). (3.23)

For any given values of p and y, the values of в and a2 that maximize (3.23) are Up, Y = (X'Q(p, Y)-1X)-1X'Q(p, y)-1y (3.24)

and

dP, Y = (y - ^p/0^ Y)-1(y - XIU/n. (3.25)

If these estimators of в and a2 are substituted back into (3.23), we get the profile or concentrated loglikelihood:

n 1 n

/p(p, Yly) = - 2 log (2ndP, Y) - - logl0(p, Y)l - - (3.26)

Full maximum likelihood estimates of the parameters in this model are therefore obtained by first finding the values of the p and y vectors which maximize (3.26). These values of p and y, denoted p and y, are then used in (3.24) and (3.25) to find U and d2, the maximum likelihood estimates.

There are a number of practical issues in this process worthy of discussion. The first involves exploiting the Cholesky decomposition of Q(p, y) denoted L(p, y) such that

L(p, y)L(p, y)' = Q(p, y)

where L(p, y) is a lower triangular matrix. If we denote

y*(^ Y) = Lfa Y)-1y

(3.27)

X*(p, Y) = L(p, Y)-1X,

(3.28)

then (3.24) becomes

Up, Y = (X*(p, Y)'X*(p, Y))-1X*(p, Y)'y*(p, Y), (3.29)

the ordinary least squares (OLS) estimator from the regression of y*(p, y) on X*(p, y), and (3.25) becomes

Z p, Y = e *(p, Y)'e *(p, Y)/n, (3.30)

the sum of squared residuals from this regression divided by n, where

e*(p, Y) = y*(p, Y) - X*(p, Y)Up, y. (3.31)

The problem of maximizing (3.26) with respect to p and y now reduces to one of maximizing

n n

- 2 ^gH^ Y/e*^ Y)) - log I L(P, Y)l = - 2 log(e*(p, YУ e*(^ Y))

where

e *(p, y) = e*(p, y)I L(p, Y)l1/n.

Thus the estimation problem reduces to minimizing the sum of squares

s = X e *(p, Y)2 (3.32)

i =1

with respect to p and Y. This may be achieved by applying a standard non­linear least squares algorithm to s and then using the resultant p and у in

(3.29) and (3.30) to obtain U and o2. Also observe that because L(p, y) is a lower triangular matrix, its determinant is easily calculated as the product of the diagonal elements, i. e.

|L(P, у)| = ПL(P, Y)ii. (3.33)

i=1

The remaining issue is the construction of Q(p, y) or more importantly L(p, y) or L_1(p, y). Note that through (3.27), (3.28), (3.29), (3.30), and (3.32), maximum likelihood estimates can be obtained without the need to calculate Q(p, y) or Q-1(p, y). In the case of AR(1) disturbances

(1 - p2)1/2 0 ..................... 0 0

-P 1 :

L-1(p, X) =

Подпись: 0 0 1 0 - P 1

which was first derived by Prais and Winsten (1954) and is also known as the Prais-Winsten transformation.

For AR(p) disturbances, van der Leeuw (1994) has shown that

Q(p, y) = [PP - NN'j-1

where P is the n x n triangular matrix

1

0

0 ............

о

о

.......... 0 0

-P1

1

0

0

P2

-Pl

1

Pp Pp-1 ..................

.......... 1

0 .......................

.................. 0

0 - Pp........................

.......... - P1

1

0

: : 10 0 0....................................... 0 0 L - pp..................... - Pj 1

and N is an n x p matrix that has all elements zero except for its top p x p block which has the triangular form

pp pp-i............................ pi

0 - pp p2

0 0

00 0 -pp

As noted by Ara (1995), in this case L(p, y)-1 has the same form as P but with the top left p x p block replaced by the lower triangular matrix

a11 0 .................. 0

$21 0^22 0

ap1 dp2 ........................ app _

The afj values can be calculated recursively in the following order app = (1 - Pp)1^

ap, p-i = (—pi — Pp-i Pp)/app, і = 1, . . . , p — 1

Подпись: ajj = image116 Подпись: £ p2 - £ dj+i.j , і=m+1 і=1

for j = p - 1, p - 2,..., 2 with m = p - j

image118

for € = 1,..., j - 2

Подпись: aj1 =
image8

and

and

image121

aii —

 

i—1

 

image122

Note that in this case

Щр, Y )l-1 — П aii •

i—1

For MA(q) disturbances, it is more convenient to construct L(p, y) which is the band triangular matrix:

a11

0

0 .......................................

.............. 0

a21

a22

0

0

a31

a32

a33

0

aq+1,1 aq+1,2 aq+1,3

aq + 1,q+1

0

0 aq + 2,2 aq + 2,3

0

0

O 0

0

0

0 .......................

' * * an, n-q ' "

* ann

(3.34)

We solve for the nonzero elements of this matrix recursively via

W) = (1 + Y2 + ... + Y 2)

Wi = (Yi + Y1Y+1 + ... + Yq-iYq), i = 1,..., q,

au = w0/2

image123 Подпись: I ajj, Подпись: i = j + 1,..., q + j,

a;+11 — Wi/ an, i — 1,..., q,

for j = 2,, q - 1 (using aij = 0 for all zero values of the elements of the above matrix in these formulae). For i = q,..., n

Подпись: V2

1 A

Подпись: aii —W0 - X a2,i-j v j—1

Подпись: aji image129 Подпись: Iaa, j = i + 1,..., i + q.

and

z* = z*i =

z* =

image9 image132

Observe that given the band triangular nature of (3.34), the transformation of z to z* = L(p, Y)-1z, where z denotes an n x 1 vector (either y in order to get y*(p, y) or a column of X in order to compute X*(p, y)) can be performed recursively by

The generalization of this approach to ARMA( p, q) disturbances is discussed by Ansley (1979) and in the special case of ARMA(1, 1) disturbances, is outlined by Rahman and King (1993). The above approach to maximum likelihood estima­tion is a general approach which requires numerical methods for optimization of the profile or concentrated loglikelihood. In the special cases of AR(1) dis­turbances and AR(2) disturbances, Beach and MacKinnon (1978a, 1978b) have derived an iterative method for solving the first-order conditions for the full maximum likelihood estimates. For further discussion of this and other methods, also see Davidson and MacKinnon (1993).

Добавить комментарий

A COMPANION TO Theoretical Econometrics

Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.