A COMPANION TO Theoretical Econometrics

Heterogeneity and negative duration dependence

The effect of unobservable covariates can be measured by comparing models with and without heterogeneity. In this section we perform such a comparison using the exponential model. For simplicity we do not include observable covariates in the model. The conditional distribution of the duration variable given the heterogeneity factor p, is exponential with parameter X, = p, whereas the marginal distribution of the heterogeneity is n. Therefore, the conditional and marginal survivor functions are:

S( Уі 1 Pi> = ^pHPiy^

Подпись:exp(-pyi)n(p)dp.

The corresponding hazard functions are:

X(Vi I Pi) = Pi,

X(V.) = - d log S(Vi) =______ — dS( Vi)

' dV S(Vi) dV

= Jo exp(-py,.-)pn(p)dp /0°exp(-pVi)n(p)dp '

Подпись: nVi(hi) = exp(-PVi)n(h)/ Подпись: exp(-pVi)n(p)dp. Подпись: (21.13)

The marginal hazard rate is an average of the individual hazard rates p, with respect to a modified probability distribution with pdf:

J 0

We also get:

X(Vi) = E%[X(Vi | Pi)] = EnK(Pi). (21.14)

This marginal hazard function features negative duration dependence. Indeed, by taking the first-order derivative we find:

dy^Vi) = - Jo p2 exp(-pVi)n(p)dp + [JQ°exp(-pVi)pn(p)dp]2

dV /0° exp(-pVi )n(p)dp [/0° exp(-pVi )n(p)dp]2

= - E% P2 + [En, i(Pi)]2 = - var%P; ^ o.

We note that the negative duration dependence at level Vi is related to the magni­tude of heterogeneity with respect to a modified probability.

To illustrate previous results let us consider a sample of individuals belonging to two categories with respective exit rates p1 > p2. The individuals in the first category with a high exit rate are called movers, whereas we call stayers the individuals belonging to the second category. The structure of the whole popula­tion at date 0 is n1 = n, n2 = 1 - n. The marginal hazard rate derived in the previous section becomes:

X(V) = П 1S1(У)Ці + n2S2(V)p2 . (2115)

П 1S1( V) + n2S2( V)

Between 0 and v some individuals exit from the population. The proportions of those who leave differ in the two subpopulations; they are given by S1( y) = exp(-p1y) < S2( y) = exp(-p 2y), which implies a modified structure of remaining individuals at date V. This modified structure is:

Пі( y) = niSi( y)/[n1S1( y) + n 2S2( y)], n 2( y) = 1 - Пі( y). (21.16)

Since S1(y) < S2(y), the proportion of movers is lower at date y than at date 0, which implies X(y) < ^(0) = п1р1 + n2p2. Finally, we note that, for large y, n2(y) tends to one and the remaining population becomes homogenous including stayers only.

Добавить комментарий

A COMPANION TO Theoretical Econometrics

Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.