A COMPANION TO Theoretical Econometrics

General AR Processes with a Unit Root, and the Augmented Dickey-Fuller Test

The assumption made in Sections 2 and 3 that the data-generating process is an AR(1) process, is not very realistic for macroeconomic time series, because even after differencing most of these time series will still display a fair amount of dependence. Therefore we now consider an AR(p) process:

p

У і = в0 + X віУч + Uf, Uf ~ iid N(0, a2). (29.37)

ap. Under the unit root hypothesis, i. e. ap = 0 and a0 = 0, the following hold: If model (29.39) is estimated without intercept, then nap ^ (1 - Zp=1 aj)p0 in distri­bution, where p0 is defined in (29.22). If model (29.39) is estimated with intercept, then nap ^ (1 - Zp- aj)p1 in distribution, where p1 is defined in (29.33). More­over, under the stationarity hypothesis, plimn^„ap = ap < 0, hence plimn^„ap = -<*>, provided that in the case where the model is estimated without intercept this intercept, a 0, is indeed zero.

Due to the factor 1 - Zp) ap in the limiting distribution of nap under the unit root hypothesis, we cannot use nap directly as a unit root test. However, it can be shown that under the unit root hypothesis this factor can be consistently estimated by 1 - Zp1 a;-, hence we can use nap/|1 - Zp) a;-| as a unit root test statistic, with limiting distribution given by (29.22) or (29.33). The reason for the absolute value is that under the alternative of stationarity the probability limit of 1 - Zp) a may be negative.10

The actual ADF test is based on the t-value of ap, because the factor 1 - Zp1 aj will cancel out in the limiting distribution involved. We will show this for the AR(2) case.

First, it is not too hard to verify from (29.43) through (29.48), and (29.54), that the residual sum of squares RSS of the regression (29.40) satisfies:

RSS =Z U + Op(1). (29.57)

t=1

This result carries over to the general AR(p) case, and also holds under the stationarity hypothesis. Moreover, under the unit root hypothesis it follows easily from (29.54) and (29.57) that the OLS standard error, s2, say, of a2 in model (29.40) satisfies:

Подпись: 1 - a1 ^jWn(x)2dx - (fWn(x)dx)2 Подпись: + op(1), Подпись: (29.58)

(RSS/ (n - 3))o-2(1 - a1)2 1 /Wn(x)2 dx - (jWn(x)dx)2

hence it follows from (29.56) that the f-value i2 of 72 in model (29.40) satisfies (29.34). Again, this result carries over to the general AR(p) case:

Theorem 2. ated by (29.39), and let tp be f-value of the OLS

estimator of a p. Under the unit root hypothesis, i. e. a p = 0 and a 0 = 0, the follow­ing hold: If model (29.39) is estimated without intercept, then tp ^ t0 in distribu­tion, where t0 is defined in (29.24). If model (29.39) is estimated with intercept, then tp ^ t1 in distribution, where t1 is defined in (29.34). Moreover, under the stationarity hypothesis, plimn^Jp ^jn < 0, hence plim n^Jp = -<*>, provided that in the case where the model is estimated without intercept this intercept, a0, is indeed zero.

Добавить комментарий

A COMPANION TO Theoretical Econometrics

Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.