A COMPANION TO Theoretical Econometrics

Estimation of simultaneous equation sample selection model

A two-stage estimation method can be easily generalized for the estimation of a simultaneous equation model. Consider the linear simultaneous equation y* = y*B + xC + u, which can be observed only if zY > e. For the estimation of structural parameters, consider the first structural equation y* = y(1) ри + x151 + ии where y*(1) consists of included endogenous variables on the right-hand side of the structural equation. The bias-corrected structural equation is уи = y(1p1 + x181 + o1e (—-фт|)-) + . The system implies the reduced form equations y* = хП + v.

Lee, Maddala, and Trost (1980) suggest the estimation of the reduced form parameters П by the Heckman two-stage method, and used the predicted y(1) to estimate the bias-corrected structural equation similar to Theil's two-stage method for a conventional simultaneous equation model.

The structural parameters can also be estimated by a general minimum dis­tance procedure (Amemiya, 1979). Amemiya's method is a systematic procedure for estimating structural parameters directly from estimated reduced form para­meters. Let J and J2 be the selection matrices such that y(l) = у*/и and хи = xJ2. As y* = y*Jipi + xJ251 + u = х(П/ири + J281) + v1, one has пи = П/ири + J281. Let П be the reduced form estimate from Heckman's two-stage estimation. Amemiya's minimum distance procedure is to estimate ри and 5и from the linear equation li = П/ipi + J2§ + Си, where Zi. = (| - пи) - (П - П)/ири is the disturbance, by

least squares or generalized least squares. The relative efficiency of an estimator
from this minimum distance approach depends on the relative efficiency of the reduced form parameter estimates (Amemiya, 1983). Lee (1981), Amemiya (1983) and Newey (1987) compare various two-stage IV estimation methods with Amemiya's generalized minimum distance estimators. It was found that many two-stage IV estimators are special cases of Amemiya's minimum distance estimators depending on appropriate reduced form estimates. Lee (1992a) shows that the minimized generalized sum of squares residuals from Amemiya's gener­alized least-squares procedure also provides a test of overidentification restric­tions of a linear structural equation. However, because Amemiya's approach relies on solving structural parameters from reduced form parameters, it cannot be generalized to the estimation of a nonlinear simultaneous equation system while many IV approaches can.

Добавить комментарий

A COMPANION TO Theoretical Econometrics

Normality tests

Let us now consider the fundamental problem of testing disturbance normality in the context of the linear regression model: Y = Xp + u, (23.12) where Y = (y1, ..., …

Univariate Forecasts

Univariate forecasts are made solely using past observations on the series being forecast. Even if economic theory suggests additional variables that should be useful in forecasting a particular variable, univariate …

Further Research on Cointegration

Although the discussion in the previous sections has been confined to the pos­sibility of cointegration arising from linear combinations of I(1) variables, the literature is currently proceeding in several interesting …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия
+38 050 512 11 94 — гл. инженер-менеджер (продажи всего оборудования)

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов шлакоблочного оборудования:

+38 096 992 9559 Инна (вайбер, вацап, телеграм)
Эл. почта: inna@msd.com.ua

За услуги или товары возможен прием платежей Онпай: Платежи ОнПай