Применение солнечной энергии

ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ. В ТЕПЛОВУЮ И ЕЕ ИСПОЛЬЗОВАНИЕ

СОЛНЕЧНЫЕ ТЕПЛОВЫЕ МАШИНЫ

Первый закон термодинамики чаще всего выражает­ся следующим образом: в замкнутой системе измене­ние внутренней энергии равно разности суммарного количества тепла, поступающего в систему Q, и сум­марного количества работы, произведенной системой W.

Если Еч и ЕJ представляют собой начальную и ко­нечную внутреннюю энергию системы, то

Q-W=E2-El. (5.1)

Для непрерывного получения полезной работы не­обходимо привести систему обратно в ее начальное со - 112

стояние, т. е. завершить цикл. В уравнении (5.1) об­щее количество тепла Q, переданного системе, состо­ит из двух частей. Ql представляет собой тепло, полу­ченное системой при более высокой температуре, а q2 — тепло, отданное системой при более низкой тем - ; пературе. Это является следствием второго закона тер­модинамики, утверждающего, что невозможно скон­струировать тепловую машину, которая будет превра­щать теплоту в работу, если в цикле имеется только | один тепловой резервуар. Резервуар с более высокой температурой часто называют источником, а с более низкой — стоком. Выраженный в другой форме второй 1 закон термодинамики утверждает, что передача тепла I может осуществляться только от более горячего тела к I более холодному. КПД цикла представляет собой от - I ношение суммарной полезной работы W к поглощен- I ному теплу Qi:

W

^1= ОТ - (5.2)

Поскольку рассматривается цикл, то №=Qi — Q2 и КПД может быть представлен как

^ = или (5.3)

Если абсолютная температура источника равна Ти а стока — Т2, то

<5-4>

Это выражение, как известно, определяет КПД иде­ального цикла Карно, названного так в честь француз­ского ученого Сади Карно, который первым сформули­ровал этот закон в 1824 г. Более детальное обсужде­ние этого вопроса в связи с использованием солнечной энергии излагается Бринквортом [1].

Никакая реальная тепловая машина не может иметь ^ПД больше, чем КПД цикла Карно. Это объясняет - Ся различными причинами, главными из которых яв - I Ляются наличие трения между движущимися частями I ^ащин, а также необходимость существования разно - I Сти температур между источником и машиной и меж - I машиной и стоком, обеспечивающей передачу тел-

I 1^1240 из

ла. В практике удобно пользоваться понятием КПД цикла Карно для сравнительных оценок, имея в виду, что в лучшем случае КПД реальной машины будет составлять две трети КПД цикла Карно.

Из уравнения (5.4) следует, что чем выше темпе­ратура горячего источника, тем больше КПД при по­стоянной температуре стока. Если применить такой подход к характеристикам солнечных коллекторов, по­казанных на рис. 3.22, то возникает противоречие, за­ключающееся в том, что некоторому увеличению тем­пературы коллектора соответствует уменьшение сум-

Рис. 5.1. Зависимость КПД идеаль-
ной солнечной машины от темпера-
туры.

/ — вакуумированный трубчатый коллектор фирмы «Оуэнс-Иллинойс»; 2 —коллектор

с двойным остеклением и селективным по-
глощающим покрытием фирмы PPG; 3 —
коллектор Хейвуда с одинарным остекле-
нием.:

марной эффективности его работы. Для некоторых за­данных значений плотности потока прямой солнечной радиации и температуры стока можно построить кри­вую КПД идеальной солнечной машины, который яв­ляется произведением суммарного КПД коллектора, приведенного на рис. 3.22, и КПД цикла Карно. Такие зависимости изображены на рис. 5.1 для трех различ­ных типов коллекторов при плотности потока радиации 900 Вт/м2 и температуре стока 300 К.

Из приведенных на рис. 5.1 данных видно, что до тех пор, пока разность температур источника и стока не превосходит 35°, КПД идеальной солнечной маши­ны, основанной на применении всех трех типов коллек­торов, примерно равны. Очевидно, что использование коллекторов простейших конструкций может обеспе­чить КПД солнечных тепловых машин лишь на уровне нескольких процентов, практически не более 2%. Для достижения КПД порядка 10% требуется значительное 114
усовершенствование конструкции коллекторов или при­менение фокусирующих систем.

Некоторые типы действующих машин. В обзоре ра­бот, проведенных в период до 1960 г., Джордан [2J отмечает большое число предложенных и реализован­ных изобретений, касающихся солнечных энергетиче­ских установок, в которых энергия расширения, сжа­тия или испарения твердых, жидких или газообразных тел преобразуется в механическую энергию. Большая часть этих устройств использовалась для перекачки воды при обводнении пустынных засушливых районов, обычно характеризующихся высоким уровнем поступ­ления солнечной радиации в течение всего года и ост­ро нуждающихся в дешевых источниках энергии. Из более ранних работ в настоящее время в связи с раз­работкой высокоэффективных коллекторов вновь рас­сматривается возможность использования системы про­стого пароструйного инжектора в сочетании с плоским солнечным коллектором. Водяной пар пропускался че­рез высокоскоростное сопло, в результате чего проис­ходило всасывание перекачиваемой воды. Суммарный КПД системы был ниже 1%.

Университет штата Флорида является главным цент­ром работ по преобразованию солнечной энергии в не­больших масштабах, причем его разработки касаются в основном машин небольшой мощности [3]. Изучают­ся машины трех основных типов:

воздушные двигатели с замкнутым циклом, в кото­рых ограниченный объем воздуха перемещается с по­мощью поршня между горячей и холодной поверхно­стями. Рабочий поршень приводится в действие за счет периодического повышения давления «в цилиндре;

воздушные двигатели с разомкнутым циклом, в ко­торых поступающий из атмосферы воздух сжимается и нагревается за счет солнечной энергии. Затем этот воздух, находящийся при высоком давлении и температуре, расширяется и цикл завершается выхлопом.

Паровые двигатели, которые используют плоские солнечные коллекторы в сочетании с обычным хладо - агентом R-11 (трихлормонофторметан).

Как в двигателях с горячим воздухом, в которых высокоэффективный нагрев обеспечивается благодаря использованию фокусирующих коллекторов, так и в 5* 115

двигателях с замкнутым циклом получаемая мощность достигала 250 Вт при диаметре параболического зер­кала 1,5 м, а суммарный КПД превышал 20%.

В солнечном паровом двухцилиндровом двигателе

[4] использовалось тепло, полученное в трех плоских коллекторах площадью 2,8 м2 каждый, средний КПД которых составлял более 50%. Максимальная выход­ная мощность достигала 150 Вт, что соответствует сум­марному КПД около 3,5% и хорошо согласуется с ре­зультатами, приведенными в предыдущем разделе.

Во Флоридском университете разрабатывается так­же солнечный насос очень простой конструкции, не имеющий движущихся частей кроме двух обратных

Подпись: Солнечная Рис. 5.2. Насос «Флюидин 3».

1 — змеевик; 2 —резервуар с водой; 3- «горячее» колено; 4 — «холодное» ко­лено» ; 5 — U-образная трубка с возду­хом; 6 — выпускное отверстие; 7 —вы­пускной клапан; в —впускной клапан; 9 — всасывающее отверстие.

клапанов [5]% В этой конструкции бойлер при помощи U-образной трубки соединен с сосудом, имеющим об­ратные клапаны на входе и выходе. Всасывающее от­верстие впускного клапана находится в контакте с пе­рекачиваемой водой. Вода в бойлере нагревается, пре­вращается в пар, который вытесняет воду из сосуда через выпускной клапан. Достигнув дна U1-об раз ной трубки, пар быстро проходит в сосуд и конденсирует­ся, в результате чего создается вакуум и впускной клапан открыовается. Описанная система является со­временной модификацией солнечного насоса Белидора (см. рис. 1.1). В другой, очень простой модификации этой конструкции, разработанной в Англии фирмой «АЕРЕ Харуэлл» [6], бойлер заменен цилиндром с го* і 16

рячим воздухом, в котором осуществляется замкнутый цикл. Один из вариантов такой системы, насос «Флюи - дин 3», показан на рис. 5.2. Один конец U-образной трубки нагревается, и вода в выходной колонке начи­нает колебаться под действием создаваемой разности давлений, вызывающей выталкивание воды через вы­пускной клапан и всасывание новых порций через впускной клапан. Эта система будет работать до тех пор, пока поступает тепло, причем колебания будут происходить со своей собственной частотой. В кон­струкции солнечного насоса, разработанной в Индии [7], в качестве рабочего тела используется пентан, на­греваемый под давлением в плоском солнечном коллек­торе. Изучены модификации насоса с водяным и воз­душным охлаждением.

ПРЕОБРАЗОВАНИЕ СОЛНЕЧНОЙ ЭНЕРГИИ. В ТЕПЛОВУЮ И ЕЕ ИСПОЛЬЗОВАНИЕ

Рис. 5.3. Нитиноловый двигатель.

/—листовые пружины; 2 — иитиноловая проволока; 3 — обод сосуда; 4 — ось.

Обычно в качестве рабочего тела в тепловых дви­гателях используется воздух или пар, однако сущест­вуют некоторые металлические сплавы, которые обла­дают таким свойством, что, будучи деформированы под действием внешней силы, они при нагреве возвра­щаются в прежнее состояние. Этим свойством обла­дает, например, сплав никеля с титаном «нитинол», у которого оно проявляется уже при температуре 65°С, легко достижимой в солнечных нагревателях. Изящной формы и простой водяной насос, действие которого ос­новано на этом эффекте, был продемонстрирован в Лондоне Френком и Эшби [8], причем эта разработка явилась результатом их более ранних работ по свой­ствам стеклокерамик. Водяной насос представляет со-

бой не что иное, как многоковшовую раму, приводи­мую в действие основным двигателем, который изобра­жен на рис. 5.3. Двигатель опирается на обод сосуда с водой и состоит из двух вертикальных стержней, же­стко закрепленных да горизонтальной оси, причем эти стержни соединены с расположенным ниже горизон­тальным жестким прутом с помощью изогнутых в про - ] тивоположные стороны листовых пружин и нитиноло - вых проволок. Когда любая из нитиноловых проволок на­гревается до 65°С, она стремится выпрямиться, сме­щая при этом центр тяжести к противоположной по отношению к оси стороне, в результате чего устройст - .j во поворачивается вокруг оси. Если, как показано на рис. 5.3, ось опирается на обрд открытого сосуда, на - ! полненного теплой водой, то устройство колеблется во - > круг оси, причем колебания обусловлены поочередным і выпрямлением нитиноловых проволок и смещением центра тяжести по мере того, как они приближаются к ■воде или погружаются в нее. Более совершенная систе - ] ма была разработана в. США Бенксом [9].

I

Применение солнечной энергии

Підрахунок потужності: яку кількість сонячних панелей потрібно для вашого будинку?

Вирішивши встановити сонячні панелі для будинку, важливо заздалегідь визначитись із важливими питаннями. Потрібно знати, скільки знадобиться сонячних батарей. Для розрахунку кількості сонячних панелей, яка буде потрібна для вашого будинку, слід …

ДРУГИЕ СПОСОБЫ ЭКОНОМИИ ЭНЕРГИИ

Хотя создание надежной теплоизоляции чердака и уменьшение сквозняков через щели окон и дверей не столь интересно и увлекательно, как сооружение систе­мы солнечного отопления или горячего водоснабжения, эти простые мероприятия на …

ПРОВЕРКА УТВЕРЖДЕНИЙ РЕКЛАМНЫХ ПРОСПЕКТОВ

- В Великобритании до сих пор отсутствуют стандар­ты на системы солнечного нагрева и опубликовано мно­го утверждений, которые вводят в заблуждение. Напри­мер: «солнечное тепло может бесплатно удовлетворить 186 j почти всю …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.