Гидравлические вяжущие вещества
К вяжущим данной системы принадлежат гидравлическая известь, романцемент, портландцемент и его разновидности. Свойства указанных вяжущих веществ зависят от гидравлического модуля и температуры обжига сырья. Гидравлический модуль т выражает содержание основного оксида СаО по отношению к суммарному количеству кислотных оксидов:
%СаО
т=------------------------------------ .
0/oSi02 °/оЛ1203 +%Гв2^з
Для каждого вяжущего вещества характерен свой гидравлический модуль. Поскольку воздушная известь изготовляется из известняков лишь с небольшой примесью глинистого вещества, у нее самый большой гидравлический модуль (более 9), у гидравлической извести т = 1,7-9; у романцемента т < 1,7. Портландцемент, получаемый из тщательно составленной искусственной смеси известнякового и глинистого компонента, характеризуется гидравлическим
модулем (1,9-2,4), примерно таким же, как у романцемента. Однако показатели прочности портландцемента во много раз превосходят прочность романцемента. Объясняется это тем, что при получении романцемента (и гидравлической извести) обжиг сырья производится не до спекания (при температуре около 1000 °С) и в этих условиях образуются низкоосновные силикаты и алюминаты кальция, обладающие в гидратированном виде невысокой прочностью. В технологии портландцемента обжиг сырьевой смеси доводится А Г воздушная известь; 2, 2' гид-
Рис. 8.2. Зависимость марки вяжущего вещества (кривая а) от гидравлического модуля и температуры обжига (кривая б): |
до частичного плавления Равлическая известь; 5, 3’ - романце-
при 1450 °С и только при мент; 4> 4'~ портландцемент наличии жидкой фазы (расплава) происходит синтез трехкальциевого силиката, обусловливающего высокие показатели прочности и гидравлические свойства. Усиление гидравлических свойств при переходе от воздушной к гидравлической извести и романцементу вследствие уменьшения гидравлического модуля с 9 до 2 при одинаковой практически температуре обжига 1000 °С видно из рис. 8.2. В точке же 3 кривой б количественное изменение температуры обжига сырья (с 1000 до 1450 °С) привело к скачкообразному увеличению прочности и появлению качественного нового вяжущего портландцемента.
Гидравлическая известь
Гидравлическую известь получают обжигом в шахтных печах не до спекания (900-1100 °С) мергелистых известняков с содержанием глины 6-20%. Полученную известь размалывают и применяют в виде порошка либо гасят в пушонку. В процессе обжига мергелистых известняков после разложения углекислого кальция (900 °С) часть образующейся СаО остается в свободном состоянии, а часть соеди
няется с оксидами Si02, А1203 и Fe203, входящими в состав глинистых материалов. При этом образуются низкоосновные силикаты (2Ca0Si02), алюминаты (СаО А1203) и ферриты (Ca0 Fe203) кальция, которые и придают извести гидравлические свойства. Гидравлическая известь начинает твердеть в воздухе (первые 7 сут) и продолжает твердеть и увеличивать свою прочность в воде. Предел прочности при сжатии после 28 сут комбинированного хранения образцов из раствора 1:3 по массе (7 сут во влажном воздухе и 21 сут в воде) 2-5 МПа и выше. Гидравлическую известь применяют для изготовления строительных растворов, бетонов низких марок и бетонных камней. Ее хранят в закрытых помещениях, при перевозке предохраняют от увлажнения.
Романцемент
Романцемент -— гидравлическое вяжущее вещество, получаемое тонким помолом обожженных не до спекания (900 °С) известняковых или магнезиальных мергелей, содержащих более 20% глины. Образующиеся при обжиге низкоосновные силикаты и алюминаты кальция придают романцементу свойство твердеть и сохранять прочность в воде. Романцемент выпускают трех марок: М25, М50 и Ml00. Он должен выдерживать испытание на равномерность изменения объема. Применяется для изготовления строительных растворов, бетонов, бетонных камней.
Гидравлическая известь и романцемент ранее широко применялись, но теперь эти вяжущие уступили свое место более совершенным гидравлическим вяжущим и прежде всего портландцементу.
Портландцемент
Портландцементом называют гидравлическое вяжущее вещество, в составе которого преобладают силикаты кальция (70-80%). Портландцемент — продукт тонкого измельчения клинкера с добавкой гипса (3-5%). Клинкер представляет собой зернистый материал, полученный обжигом до спекания (при 1450 °С) сырьевой смеси, состоящей в основном из углекислого кальция (известняки различного вида) и алюмосиликатов (глины, мергеля, доменного шлака и др.). Небольшая добавка гипса регулирует сроки схватывания портландцемента.
Для производства портландцемента имеются неограниченные сырьевые ресурсы в виде побочных продуктов промышленности (шлаков, зол, шламов) и распространенных карбонатных и глинистых горных пород. Автоматизация производственных процессов и переход к производству цемента на заводах-автоматах значительно снижают потребление энергии и трудоемкость, позволяют значительно увеличить выпуск цемента в соответствии с гигантским масштабом-строительства в нашей стране.
Изобретение портландцемента (1824) связано с именами Егора Герасимовича Челиева — начальника мастерских военно-рабочей бригады и Джозефа Аспдина — каменщика из английского города Лидса, которому был выдан патент на изобретение. Название портландцемент связано с полуостровом на юге Великобритании — Portland, где началось промышленное производство цемента.
Принципы производства
Производство портландцемента — сложный технологический и энергоемкий процесс, включающий: добычу в карьере и доставку на завод сырьевых материалов известняка и глины; приготовление сырьевой смеси; обжиг сырьевой смеси до спекания — получение клинкера; помол клинкера с добавкой гипса — получение портландцемента. Обеспечению заданного состава и качества клинкера подчинены все технологические операции.
Сырьевые материалы. Сырьевыми материалами для производства клинкера служат известняки с высоким содержанием углекислого кальция (мел, плотный известняк, мергели и др.) и глинистые породы (глины, глинистые сланцы), содержащие Si02, А1203 и Fe203. В среднем на 1 т цемента расходуется около 1,5 т минерального сырья; примерное соотношение между карбонатным и глинистым составляющими сырьевой смеси 3:1 (т. е. берется около 75% известняка и 25% глины). В сырьевую смесь вводят добавки, корректирующие химический состав, регулирующие температуру спекания смеси и кристаллизацию минералов клинкера. Например, количество Si02 повышают, добавляя в сырьевую массу трепел, опоку. Добавление колчеданных огарков увеличивает содержание Fe203.
Для производства портландцемента все шире используют побочные продукты промышленности. Весьма ценным сырьем являются доменные шлаки, содержащие необходимые для получения клинкера составные части (СаО, Si02, А1203, Fe203). Нефелиновый шлам, получающийся при производстве глинозема, содержит 25-30% Si02 и 50-55% СаО; достаточно к нему добавить 15-20% известняка, чтобы получить сырьевую смесь. Использование нефелинового шлама
повышает производительность печей примерно на 20% и снижает расход топлива на 20-25%.
Основной и наиболее эффективный вид топлива — природный газ, отличающийся высокой теплотворной способностью. Сокращается применение мазута и твердого топлива, приготовляемого в специальных установках для сушки и помола угля (антрацита, каменного угля). Теплотворная способность твердого топлива ниже, чем газообразного; углевоздушные смеси подвержены взрывам; зольность углей 10-20%, и зола, попадая в обжигаемую сырьевую смесь, искажает расчетный минеральный состав клинкера. Стоимость топлива составляет до 25% себестоимости готового цемента, поэтому на цементных заводах много внимания уделяется его экономии.
Подготовка сырья. Приготовление сырьевой массы состоит в тонком измельчении и смешении взятых в установленном соотношении компонентов, что обеспечивает полноту прохождения химических реакций между ними и однородность клинкера. Приготовление сырьевой смеси осуществляется сухим, мокрым и комбиниро - 1 ванным способами.
Сухой способ заключается в измельчении и тесном смещении сухих (или предварительно высушенных) сырьевых материалов, поэтому сырьевая смесь получается в виде минерального порошка, называемого сырьевой мукой. Тонкое совместное измельчение известняка и глины осуществляют в трубных (шаровых) мельницах, в которых совмещаются помол и сушка сырьевых материалов до остаточной влажности 1-2%.
Сырьевую муку направляют в силосы, в них корректируется состав сырья и создается запас, необходимый для бесперебойной работы печей. Наиболее энергоемкий процесс — декарбонизация сырья — вынесен в специальное устройство — декарбонизатор, в котором он протекает быстрее и где СаСОз разлагается. При сухом способе производства затраты тепла на обжиг клинкера в 1,5-2 раза меньше, чем при мокром способе. Сухой способ наиболее выгоден при использовании известняка и глины с невысокой влажностью (10-15%), однородного состава и физической структуры, когда можно получить гомогенную сырьевую муку при сухом помоле.
Мокрый способ приготовления сырьевой смеси применяют, если мягкое сырье имеет значительную влажность (мел, глины). Тонкое измельчение и смешение исходных материалов осуществляется в водной среде, поэтому сырьевая смесь получается в виде жидкотекучей массы - шлама с большим содержанием воды (35-45%).
Совместное измельчение известняка, глины и корректирующих
добавок (например, пиритных огарков, содержащих Fe203) обеспечивает тщательное смешение исходных материалов и получение однородной сырьевой смеси. Помол сырья производят до остатка на сите 008 не более 8-10%, следовательно, более 90% частиц смеси имеет размер менее 80 мкм. Из трубных мельниц известковоглиняный шлам перекачивают насосами в вертикальные или горизонтальные резервуары (шламбассейны), в них корректируют и усредняют химический состав шлама. Применение разжижителей шлама позволяет снизить влажность шлама, но не устраняет основной недостаток мокрого способа производства цемента — высокую энергоемкость процесса получения клинкера. Пока наша цементная промышленность применяет производство «по мокрому способу», в условиях резкого удорожания энергоносителей стоимость 1 т цемента значительно выше по сравнению с «сухим способом».
Применение «комбинированного способа» дает возможность на 20-30% снизить расход топлива по сравнению с мокрым способом. Сущность этого способа заключается в том, что приготовленный шлам до поступления в печь обезвоживается на специальных установках. Однако при этом возрастает расход электроэнергии, т. е. энергоемкость производства в целом остается высокой.
Обжиг. Обжиг сырьевой смеси как при сухом, так и при мокром способе производства осуществляется в основном во вращающихся печах. Шахтные печи применяют иногда только при сухом способе производства. Вращающаяся печь представляет собой длинный, расположенный слегка наклонно цилиндр (барабан), сваренный из листовой стали с огнеупорной футеровкой внутри (рис. 8.3). Длина печей 95-185-230 м, диаметр 5-7 м.
Рис. 8.3. Схема вращающейся печи: / — сырьевая шихта; 2 — горячие газы; 3 — вращающаяся печь; 4 — цепные завесы, улучшающие теплообмен, 5 — привод; 6 — водяное охлаждение зоны спекания печи; 7 — факел; 8 — подача топлива через форсунку; 9 — клинкер; 10 — холодильник; 11 — опоры |
В России стали применять вращающиеся печи, работающие по сухому способу производства, размером 7x95 м, производительностью 3000 т/сут, с расходом тепла на обжиг 3400 кДж/кг. На предприятиях с мокрым способом производства работают печи 7x230 м, производительностью 3000 т/сут, при расходе тепла 5600 кДж/кг. Для улучшения теплообмена внутри печей ближе к верхнему (холодному) концу устраивают цепные завесы, устанавливают теплообменники различной конструкции.
Вращающиеся печи работают по принципу противотока. Сырье в виде порошка (сухой способ) или в виде шлама (мокрый способ) подается автоматическим питателем в печь со стороны ее верхнего (холодного) конца, а со стороны нижнего (горячего) конца вдувается топливо (природный газ, мазут, воздушно-угольная смесь), сгорающее в виде факела на протяжении 20-30 м длины печи. Горячие газы поступают навстречу сырью. Сырье занимает только часть печи по поперечному сечению, и при ее вращении со скоростью 1-2 об/мин медленно движется к нижнему концу, проходя различные температурные зоны.
В зоне испарения происходит высушивание поступившего сырья при постепенном повышении температуры с 70-80 °С (в конце этой зоны), поэтому первую зону называют еще зоной сушки. Подсушенный материал комкуется, при перекатывании комья распадаются на более мелкие гранулы.
В зоне подогрева, которая следует за сушкой сырья, при посте пенном нагревании сырья с 200 °С до 700 °С, сгорают находящиеся в нем органические примеси, из глинистых минералов удаляется кристаллохимическая вода (при 450-500 °С) и образуется каолинитовый ангидрит Al203 2Si02 и другие подобные соединения.
В зоне кальцинирования температура обжигаемого материала поднимается с 700°С до 1100°С, здесь завершается процесс диссоциации углекислых солей кальция и магния и появляется значительное количество свободного оксида кальция. В этой же зоне происходит распад дегидратированных глинистых минералов на оксиды Si02, А1203, Fe203, которые вступают в химическое взаимодействие с СаО. В результате этих реакций, происходящих в твердом состоянии, образу ют - ся минералы ЗСа0 А1203, СаОА1203 и частично 2Ca0 Si02 — белита.
В зоне экзотермических реакций (1100-1250 °С) проходят твердофазовые реакции образования ЗСа0А1203; 4Ca0Al203 Fe203 и белита.
В зоне спекания (1300-1450 °С) температура обжигаемого материала достигает наивысшего значения, необходимого для частичного плавления материала и образования главного минерала клинкера - алита 3Ca0Si02 почти до полного связывания оксида кальция (в
клинкере СаОсвобод — не более 0,5-1%).
В зоне охлаждения температура клинкера понижается с 1300 °С до 1000 °С; здесь полностью формируется его структура и состав.
Цементный клинкер выходит из вращающейся печи в виде мелких камнеподобных зерен-гранул темно-серого или зеленоватосерого цвета. По выходе из печи клинкер интенсивно охлаждается с 1000 °С до 100—200 °С. После этого клинкер выдерживается на складе 1-2 недели.
Помол. Помол клинкера в тонкий порошок производится преимущественно в трубных (шаровых) мельницах. Трубная мельница представляет собой стальной барабан, облицованный внутри стальными броневыми плитами и разделенный дырчатыми перегородками на 2—4 камеры. Крупнейшими помольными агрегатами являются мельницы размером 3,95x11 м, производительностью 100 т/ч и размером 4,6x16,4 м, производительностью 135 т/ч.
Материал в трубных мельницах измельчается под действием загруженных в барабан мелющих тел — стальных шаров (в камерах грубого помола) и цилиндров (в камерах тонкого помола). При вращении мельницы мелющие тела поднимаются на некоторую высоту и падают, дробя и истирая зерна материала.
Готовый портландцемент — очень тонкий порошок темносерого или зеленовато-серого цвета; по выходе из мельницы он имеет высокую температуру (80-120 °С) и направляется пневматическим транс портом для хранения в силосы, которые обычно выполняются в виде железобетонных банок диаметром 8-15 м и высотой 25-30 м. Большие силосы вмещают 4000-10 000 т цемента.
Цемент в силосах выдерживают до его охлаждения и гашения остатков свободного оксида кальция, которое происходит под действием влаги воздуха. Из силосов цемент погружается в автоцементовозы, в вагоноцементовозы или крытые железнодорожные вагоны. Часть цемента поступает на отвешивающие и упаковывающие машины и поставляется в мешках по 50 кг. Схема производства портландцемента представлена на рис. 8.4.
Твердение
Качество клинкера определяет все свойства портландцемента, добавки же, вводимые в цемент, лишь регулируют его свойства. Качество клинкера зависит от его химического и минерального состава, тщательности подбора сырьевой смеси, условий проведения ее обжига и режима охлаждения получившегося клинкера.
Сухой способ: сырьевая смесь поступает /4 |
Мокрый способ: сырьевая смесь поступает из шламбассейна. |
13 |
Рис. 8.4. Схема производства портландцемента 1 глина и известняк, 2 — приготовление сырьевой смеси, 3 — дозатор, 4 — вращающаяся печь, 5 — подача топлива, ^ транспорт клинкера, 7 — склад клинкера, 8 — дробление и дозирование гипса, 9 — склад гипса, 10 — трубная мельница для помола клинкера (с гипсом), 11 — пневматический насос, 12 — компрессор, 13 — склад (силосы) цемента, 14 — упаковка цемента |
Клинкер обычно получают в виде спекшихся гранул размером 10-40 мм, имеющих сложную микроструктуру, так как клинкер включает ряд кристаллических фаз и некоторое количество стекловидной фазы.
Химический состав клинкера выражают содержанием оксидов (% по массе). Главными являются: СаО — 63-66%, Si02 — 21-24%, А120з — 4-8% и Fe203 — 2-4%, суммарное количество которых составляет 95-97%. В небольших количествах в виде различных соединений могут входить MgO, Si03, Na20, К20, ТЮ2, Сг203 и P205. В процессе обжига, доводимого до спекания, главные оксиды образуют силикаты, алюминаты и алюмоферрит кальция в виде минералов кристаллической структуры, а некоторая часть их входит в стекловидную фазу.
Минеральный состав клинкера. Основными минералами клинкера являются: алит, белит, трехкальциевый алюминат и алюмоферрит кальция.
Алит 3Ca0 Si02 (или C3S) — самый важный минерал клинкера, определяющий быстроту твердения, прочность и другие свойства портландцемента; содержится в клинкере в количестве 45-60%.
Белит 2Ca0 Si02 (или C2S) — второй по важности и содержанию (20-30%) силикатный минерал клинкера. Он медленно твердеет, но достигает высокой прочности при длительном твердении портландцемента.
Трехкальциевый алюминат (или С3А) — в клинкере содержится в количестве 4-12% — самый активный клинкерный минерал, быстро взаимодействует с водой. Является причиной сульфатной коррозии бетона, поэтому в сульфатостойком портландцементе содержание С3А ограничено 5%.
Четырехкальциевый алюмоферрит (или C4AF) — в клинкере содержится в количестве 10-20%. Характеризуется умеренным тепловыделением и по быстроте твердения занимает промежуточное положение между C3S и C2S.
Клинкерное стекло присутствует в промежуточном веществе в количестве 5-15%, оно состоит в основном из СаО, А1203, Fe203, MgO, К20, Na20.
Содержание свободных СаО и MgO не должно превышать соответственно 1% и 5%. При более высоком их содержании снижается качество цемента и может проявиться неравномерное изменение его объема при твердении, связанное с переходом СаО в Са(ОН)2 и MgO в Mg(OH)2.
Щелочи (Na20, К20) входят в алюмоферритную фазу клинкера, а также присутствуют в цементе в виде сульфатов. Содержание щелочей в портландцементе ограничивается до 0,6% в случае применения заполнителя (песка, гравия), содержащего реакционно-способные опаловидные модификации двуоксида кремния, из-за опасности растрескивания бетона в конструкции.
Цементное тесто, приготовленное путем смешивания цемента с водой, имеет три периода твердения. Вначале, в течение 1-3 ч после затворения цемента водой, оно пластично и легко формуется. Потом наступает схватывание, заканчивающееся через 5-10 ч после затворения; в это время цементное тесто загустевает, утрачивая подвижность, но его механическая прочность еще невелика. Переход загустевшего цементного теста в твердое состояние означает конец схватывания и начало твердения, которое характерно заметным возрастанием прочности. Твердение при благоприятных условиях длится годами — вплоть до полной гидратации цемента.
Химические реакции. Сразу после затворения цемента водой начинаются химические реакции. Уже в начальной стадии процесса гидратации цемента происходит быстрое взаимодействие алита с водой с образованием гидросиликата кальция и гидроксида: 2(3Ca0Si02) + 6Н20 = 3CaO2Si02-3H20 + ЗСа(ОН)2.
После затворения гидроксид кальция образуется из алита, так как белит гидратируется медленнее алита и при его взаимодействии с водой выделяется меньше Са(ОН)2 что видно из уравнения химической реакции:
2(2CaOSi02) + 4Н20 = 3Ca02Si02-3H20 + Са(ОН)2. Взаимодействие трехкальциевого алюмината с водой приводит к образованию гидроалюмината кальция:
ЗСа0А1203 + 6Н20 = ЗСа0А1203-6Н20.
Для замедления схватывания при помоле клинкера добавляют небольшое количество природного гипса (3-5% от массы цемента). Сульфат кальция играет роль химически активной составляющей цемента, реагирующей с трехкальциевым алюминатом и связывающей его в гидросульфоалюминат кальция (минерал эттрингит) в начале гидратации портландцемента:
ЗСа0А1203 + 3(CaS04-2H20) + 26Н20 = 3Ca0Al203-3CaS04-32H20. В насыщенном растворе Са(ОН)2 эттрингит сначала выделяется в коллоидном тонкодисперсном состоянии, осаждаясь на поверхности частиш ЗСаО А12Оз, замедляет их гидратацию и затягивает начало схватывания цемента. Кристаллизация Са(ОН)2 из пересыщенного раствора понижает концентрацию гидроксида кальция в растворе, и эттрингит уже образуется в виде длинных иглоподобных кристаллов. Кристаллы эттрингита и обусловливают раннюю прочность затвердевшего цемента. Эттрингит, содержащий 31-32 молекулы кристаллизационной воды, занимает примерно вдвое больший объем по сравнению с суммой объемов реагирующих веществ (С3А и сульфат кальция). Заполняя поры цементного камня, эттрингит повышает его механическую прочность и стойкость. Структура затвердевшего цемента улучшается еще и потому, что предотвращается образование в нем слабых мест в виде рыхлых гидроалюминатов кальция.
Четырехкальциевый алюмоферрит при взаимодействии с водой расщепляется на гидроалюминат и гидроферрит:
4Ca0Al203Fe203 + лгН20 = ЗСа0А12036Н20 + Ca0Fe2037iH20.
Гидроалюминат связывается добавкой природного гипса, как указано выше, а гидроферрит входит в состав цементного геля.
Цементный камень состоит из гелевых и кристаллических продуктов гидратации цемента и многочисленных включений в виде негидратированных зерен клинкера. Основная масса новообразований при взаимодействии цемента с водой получается в виде гелевидной массы, состоящей в основном из субмикрокристаллических частичек гидросиликата кальция. Гелеподобная масса пронизана относительно крупными кристаллами гидроксида кальция. Такое своеобразное «комбинированное» строение предопределяет специфические свойства цементного камня, резко отличающиеся от свойств других материалов — металлов, стекла, гранита и т. п. Например, с наличием гелевой составляющей связана усадка при твердении на воздухе и набухание в воде, особенности работы под нагрузкой и другие свойства.
Коррозия цементного камня вызывается воздействием агрессивных газов и жидкостей на составные части затвердевшего портландцемента, главным образом на Са(ОН)2 и ЗСа0 А1203 6Н20. Встречаются десятки веществ, могущих воздействовать на цементный камень и оказаться для него вредным. Несмотря на разнообразие агрессивных веществ, основные причины коррозии можно разделить на три вида: разложение составляющих, цементного камня, растворение и вымывание гидроксида кальция; образование легкорастворимых солей в результате взаимодействия гидроксида кальция и других со-ставных частей цементного камня с агрессивными веществами и вымывание этих солей (кислотная, магнезиальная коррозия); образование в порах новых соединений, занимающих больший объем, чем исходные продукты реакции; это вызывает появление внутренних напряжений в бетоне и его растрескивание (сульфоалюми- натная коррозия).
Коррозия первого вида. Выщелачивание гидроксида кальция происходит интенсивно при действии мягких вод, содержащих мало растворенных веществ. К ним относятся воды оборотного водоснабжения, конденсат, дождевые воды, воды горных рек и равнинных рек в половодье, болотная вода. Содержание гидроксида кальция в цементном камне через 3 мес твердения составляет 10-15% (считая на СаО). После его вымывания и в результате уменьшения концентрации СаО (менее 1,1 г/л) начинается разложение гидросиликатов и гидроалюминатов кальция. Выщелачивание Са(ОН)2 в количестве 15-30% от общего содержания в цементном камне вызывает понижение его прочности на 40-50% и более. Выщелачивание можно заметить по появлению белых подтеков на поверхности бетона.
Для ослабления коррозии выщелачивания ограничивают содержание трехкальциевого силиката в клинкере до 50%. Главным средством борьбы с выщелачиванием гидроксида кальция является введение активных минеральных добавок и применение плотного бетона. Процесс выщелачивания гидроксида кальция замедляется, когда в поверхностном слое бетона образуется малорастворимый СаСОз вследствие карбонизации Са(ОН)2 при взаимодействии с С02 воздуха. Выдерживание на воздухе бетонных блоков и свай, применяемых для сооружения оснований, а также портовых и других гидротехнических сооружений повышает их стойкость.
Коррозия второго вида. Углекислотная коррозия развивается при действии на цементный камень воды, содержащей свободный двуоксид углерода в виде слабой угольной кислоты. Избыточный (сверх равновесного количества) двуоксид углерода разрушает карбонатную пленку бетона вследствие образования хорошо растворимого бикарбоната кальция по реакции
СаСОз + (С02)своб + Н20 = Са(НС03)2.
Общекислотная коррозия происходит при действии растворов любых кислот, имеющих значения водородного показателя рН<7, исключение составляют поликремневая и кремнефтористоводородная кислоты. Свободные кислоты встречаются в сточных водах промышленных предприятий, они могут проникать в почву и разрушать бетонные фундаменты, коллекторы и другие подземные сооружения. Кислота образуется также из сернистого газа, выходящего из топок. В атмосфере промышленных предприятий, кроме S02 могут содержаться ангидриты других кислот, а также хлор и хлористый водород.
При растворении его во влаге, адсорбированной на поверхности железобетонных конструкций, образуется соляная кислота.
Кислота вступает в химическое взаимодействие с гидроксидом кальция, при этом образуются растворимые соли (например, СаС12) и соли, увеличивающиеся в объеме (CaS04-2H20):
Са(ОН)2 + 2НС1 = СаС12 + 2Н20,
Са(ОН)2 + H2S04 = CaS04'2H20.
Кроме того, кислоты могут разрушать и силикаты кальция. Бетон на портландцементе защищают от непосредственного действия кислот с помощью защитных слоев из кислотостойких материалов.
Магнезиальная коррозия наступает при взаимодействии на гидроксид кальция магнезиальных солей, которые встречаются в растворенном виде в грунтовых водах и всегда содержатся в большом количестве в морской воде. Содержание солей в воде мирового океана составляет (г/л): NaCl — 27,2; MgCl2 — 3,8; MgS04 — 1,7; CaS04 — 1,2. Разрушение цементного камня вследствие реакции обмена протекает по следующим формулам:
Са(ОН)2 + MgCl2 = СаС12 + Mg(OH)2,
Са(ОН)2 + MgS04 + 2Н20 = CaS042H20 + Mg(OH)2.
В результате этих химических реакций образуется растворимая соль (хлористый кальций или двуводный сульфат кальция), вымываемая из бетона. Гидроксид магния представляет бессвязную массу, не растворимую в воде, поэтому реакция идет до полного израсходования гидроксида кальция.
Коррозия под действием минеральных удобрений. Особенно вредны для бетона аммиачные удобрения — аммиачная селитра и сульфат аммония. Аммиачная селитра, состоящая в основном из нитрата аммония NH4N03, подвергается гидролизу и поэтому дает в воде кислую реакцию. Нитрат аммония действует на гидроксид кальция: Са(ОН)2 + 2NH4N03 + 2Н20 = Ca(N03)2'4H20 + 2N03. Образующийся нитрат кальция хорошо растворяется в воде и вымывается из бетона. Хлористый калий KCI повышает растворимость Са(ОН)2 и ускоряет коррозию. Из числа фосфорных удобрений агрессивен суперфосфат, состоящий в основном из монокаль - циевого фосфата Са(Н2Р04)2 и гипса, но содержащий еще и некоторое количество свободной фосфорной кислоты.
Коррозия под влиянием органических веществ. Органические кислоты, как и неорганические, быстро разрушают цементный камень. Большой агрессивностью отличаются уксусная, молочная и винная кислоты. Жирные насыщенные и ненасыщенные кислоты (олеиновая, стеариновая, пальмитиновая и др.) разрушают цементный камень, так как при действии гидроксида кальция они омыляют- ся. Поэтому вредны и масла, содержащие кислоты жирного ряда: льняное, хлопковое, а также рыбий жир. Нефть, нефтяные продукты (керосин, бензин, мазут, нефтяные масла) не представляют опасности для бетона, если они не содержат нефтяных кислот или соединений серы. Однако надо учитывать, что нефтепродукты легко проникают через бетон. Продукты разгонки каменноугольного дегтя, содержащие фенол, могут агрессивно влиять на бетон.
Коррозии третьего вида. Сульфоалюминатная коррозия возникает при действии на гидроалюминат цементного камня воды, содержащей сульфатные ионы:
ЗСа0А1203-6Н20 + 3CaS04+ 25Н20 = 3Ca0Al203 3CaS04-31H20.
Образование в порах цементного камня малорастворимого трехсульфатного гидросульфоалюмината кальция (эттрингита) сопровождается увеличением объема примерно в 2 раза. Развивающееся в порах кристаллизационное давление приводит к растрескиванию защитного слоя бетона. Вслед за этим происходит коррозия стальной арматуры, усиление растрескивания бетона и разрушение конструкции. С сульфоалюминатной коррозией всегда надо считаться при строительстве морских сооружений. Вместе с тем могут оказаться агрессивными сточные воды промышленных предприятий, а также грунтовые воды. Если в воде содержится сульфат натрия, то вначале с ним реагирует гидроксид кальция:
Са(ОН)2 + NaS04 <-> CaS04+2Na0H.
В последующем идет образование гидросульфоалюмината кальция вследствие взаимодействия получающегося сульфата кальция и гидроалюмината. Для борьбы с сульфоалюминатной коррозией применяется специальный сульфатостойкий портландцемент.
Щелочная коррозия может происходить в двух формах: под действием концентрированных растворов щелочей на затвердевший цементный камень и под влиянием щелочей, имеющихся в самом цементе. Если бетон насыщается раствором щелочи (едкого натрия или калия), а затем высыхает, то под влиянием углекислого газа в порах бетона образуются сода и поташ, которые, кристаллизуясь, расширяются в объеме и разрушают цементный камень. Сильнее разрушается от действия сильных щелочей цемент с высоким содержанием алюминатов кальция.
Коррозия, вызываемая щелочами цемента, происходит вследствие процессов, протекающих внутри бетона между его компонентами. В составе цементного клинкера всегда содержится разное количество щелочных соединений. В составе заполнителей бетона, в особенности в песке, встречаются реакционно-способные модификации кремнезема: опал, халцедон, вулканическое стекло. Они вступают при обычной температуре в разрушительные для бетона реакции со щелочами цемента. В результате образуются набухающие студенистые отложения белого цвета на поверхности зерен реакционноспособного заполнителя, появляется сеть трещин, поверхность бетона местами вспучивается и шелушится. Разрушение бетона может происходить через 10-15 лет после окончания строительства.
Технические характеристики портландцемента
Характеристики портландцемента определяют: минеральный и вещественный составы, тонкость помола, нормальная густота, сроки схватывания, марка по прочности и другие технические свойства.
Минеральный состав выражает содержание в клинкере (в % по массе) главных минералов. Применяются расчетный и прямые экспериментальные методы определения минерального состава клинкера.
Минеральный состав рассчитывают на основании данных химического анализа, который определяет содержание оксидов (в % по массе).
Прямые экспериментальные методы определения минерального состава клинкера включают: оптическую и электронную микроскопию, рентгеновский фазовый анализ, микрозондирование (лазерный и ионный микрозонды) и др.
Вещественный состав цемента выражает содержание в цементе (в % по массе) основных компонентов: клинкера, гипса, минеральных добавок, пластифицирующих и гидрофобизующих добавок; он приводится в паспорте на цемент.
Допускается введение в цемент при его помоле пластифицирующих или гидрофобизующих поверхностно-активных добавок в количестве не более 0,3% от массы цемента (по согласованию с потребителем).
Тонкость помола цемента оценивается по стандарту путем просеивания предварительно высушенной пробы через сито № 008 (размер ячейки в свету 0,08 мм); тонкость помола должна быть такой, чтобы через указанное сито проходило не менее 85% массы просеиваемой пробы.
Наряду с ситовым анализом для оценки дисперсности цемента проводят определение удельной поверхности с помощью специального прибора — поверхностемера. Даже обычный портландцемент М400 измельчается довольно тонко: остаток на сите с сеткой № 008 не превышает 15%, т. е. 85% зерен цемента имеет размер менее 80 мкм, при этом его удельная поверхность составляет обычно 2500- 3000 см2/г (суммарная площадь зерен цемента в 1 г).
Плотность портландцемента (без минеральных добавок) составляет 3,05-3,15. Его насыпная плотность зависит от уплотнения и у рыхлого цемента составляет 1100 кг/м3, у сильно уплотненного — до 1600 кг/м3, в среднем — 1300 кг/м3.
Водопотребность цемента определяется количеством воды (в % от массы цемента), которое необходимо для получения цементного теста нормальной густоты. Нормальной густотой цементного теста считают такую его подвижность, при которой цилиндр-пестик прибора Вика, погруженный в кольцо, заполненное тестом, не доходит на 5-7 мм до пластинки, на которой установлено кольцо. Водопотребность портландцемента в пределах от 22 до 28%. При введении активных минеральных добавок осадочного происхождения (диатомита, трепела, опоки) водопотребность цемента повышается и может достигнуть 32-37%.
Сроки схватывания и равномерность изменения объема цемента определяют в тесте нормальной густоты.
Сроки схватывания определяют с помощью прибора Вика путем погружения иглы в тесто нормальной густоты. Началом схватывания считают время, прошедшее от начала затворения до того момента, когда игла не доходит до пластинки на 1-2 мм. Конец схватывания — время от начала затворения до того момента, когда игла погружается в тесто не более чем на 1-2 мм. Начало схватывания цемента должно наступать не ранее 45 мин, а конец схватывания - не позднее 10 ч от начала затворения. Для получения нормальных сроков схватывания при помоле клинкера на цементном заводе вводят добавку двуводного гипса.
Равномерность изменения объема. Причиной неравномерного изменения объема цементного камня являются местные деформации, вызываемые расширением свободной СаО и периклаза MgO вследствие их гидратации. По стандарту изготовленные из теста нормальной густоты образцы-лепешки через 24 ч предварительного твердения выдерживают в течение 3 ч в кипящей воде. Лепешки не должны деформироваться, не допускаются радиальные трещины.
Активность и марка портландцемента. Активность и марку определяют испытанием стандартных образцов-призм размером 4x4x16 см, изготовленных из цементно-песчаной растворной смеси состава 1:3 (по массе) и В/Ц = 0,4 при консистенции раствора по расплыву конуса 106-115 мм. Через 28 сут твердения (первые сутки
образцы твердеют в формах во влажном воздухе, а затем 27 сут — в воде комнатной температуры), образцы-призмы сначала испытывают на изгиб, затем получившиеся половинки призм — на сжатие (см. табл. 1.4). Портландцемент разделяют на марки 400, 500, 550, 600*.
У быстротвердеющих портландцементов нормируется не только 28-суточная прочность, но и начальная, 3-суточная.
Выделение тепла при твердении. Гидратация цемента сопровождается выделением тепла. В тонких бетонных конструкциях тепло гидратации быстро рассеивается и не вызывает существенного разогрева бетона. Однако тепловыделение внутренней части массивной конструкции может повысить его температуру на 40 °С и более по отношению к температуре бетонной смеси при укладке. Снаружи массив остывает быстрее, чем внутри, возникают температурные напряжения, которые нередко являются причиной появления трещин в бетоне. Чтобы избежать растрескивания, стремятся использовать низко - термичные цементы, снижают расход цемента в бетоне, а в случае необходимости применяют искусственное охлаждение массива.
Правила приемки цементов. Цемент отгружают и принимают партиями. Размер партии устанавливают в пределах от 300 до 4000 т в зависимости от годовой мощности цементного завода.
Завод производит паспортизацию цемента и назначает его марку на основании данных текущего контроля производства. В паспорте указывается: полное название цемента, его гарантированная марка, вид и количество добавки, нормальная густота цементного теста, средняя активность цемента при пропаривании. Для проверки качества отгружаемой продукции поставщик производит физические и механические испытания цемента, определяя его прочность в возрасте 3 и 28 сут. По требованию потребителя поставщик сообщает потребителю результаты физико-механических и химических испытаний цемента в 10-дневный срок после их окончания.
Цемент отгружают навалом или в бумажных многослойных мешках; массу мешка указывают на упаковке. При транспортировании и хранении цемент должен защищаться от воздействия влаги и загрязнения. Цементы хранят раздельно по видам и маркам, смешивание разных цементов не допускается.
В соответствии с ГОСТ 30515-97 предусматривается введение классов цементов (МПа): 22,5; 32,5; 42,5; 52,5.
211
Для получения портландцемента с заданными специальными свойствами используют следующие основные пути: регулирование минерального состава и структуры цементного клинкера, оказывающее решающее влияние на все строительно-технические свойства; введение минеральных и органических добавок, позволяющих направленно изменять свойства вяжущего, экономить клинкер, уменьшать расход цемента в бетоне; регулирование тонкости помола и зернового состава цемента, влияющих на скорость твердения, активность, тепловыделение и другие свойства цемента.
Быстротвердеющий и особобыстро- твердеющий портландцемент
Быстротвердеющий портландцемент (БТЦ) — портландцемент с минеральными добавками, отличающийся повышенной прочностью через 3 сут твердения, более половины его марочной прочности. Сумма C3S+C3A в клинкере -— обычно не менее 60-65%. Помол БТЦ производится более тонко до удельной поверхности 3500-4000 см2/г (вместо 2800-3000 см2/г для обычного портландцемента). Это ускоряет твердение цемента. БТЦ выпускают М400 и М500 с нормативными показателями прочности.
Особобыстротвердеющий высокопрочный портландцемент (ОБТЦ) марки 600 в возрасте 1 сут имеет предел прочности 20- 25 МПа, а через 3 сут — 40 МПа. Такой быстрый рост прочности обусловливается содержанием C3S до 65-68%, С3А — до 18%, тонкость помола около 4000 см2/г. Применение ОБТЦ позволяет снижать расход цемента на 15-20%.
Эти цементы применяются в производстве сборных железобетонных конструкций, а также при зимних бетонных работах. Следует иметь ввиду повышенное их тепловыделение, которое исключает применение для массивных конструкций. БТЦ с повышенным содержанием трехкальциевого алюмината не пригоден для бетона, подвергающегося сульфоалюминатной коррозии.
Сверхбыстротвердеющий цемент (СБТЦ), разработанный на основе специального минерального состава, дает раннюю прочность через 1-4 часа, достаточную для распалубки изделий. В сырьевую смесь СБТЦ вводятся галогеносодержащие вещества (фторид или хлорид кальция) и повышается содержание алюминатов.
Сульфатостойкий портландцемент изготовляют на основе клинкера, содержащего не более 50% C3S, 5% С3А и 22% C3A+C4AF.
Сульфатостойкий портландцемент предназначается не только для изготовления бетонов, подвергающихся действию сульфатной коррозии, но и для бетонов повышенной морозостойкости. Это обеспечивается прежде всего пониженным содержанием трехкальциевого алюмината. Кроме того, при помоле никаких минеральных добавок, кроме гипса, не вводится, однако возможно введение пластифицирующих или гидрофобизующих веществ, повышающих морозостойкость.
Портландцементы с органическими добавками
В современной технологии бетона широко применяют поверхностно-активные вещества, вводимые в малых дозах (0,05-0,3% от массы цемента) в бетонные и растворные смеси при их изготовлении и добавляемые в цемент при помоле клинкера.
Поверхностно-активные добавки можно разделить на гидрофи - лизующие и гидрофобизующие.
К гидрофилизующим добавкам относятся лигносульфонаты кальция (JICT).
К гидрофобизующим добавкам относят мылонафт, асидол, аси - долмылонафт, синтетические жирные кислоты и их соли.
Пластифицированный портландцемент изготовляют путем введения при помоле клинкера около 0,25% J1CT (считая на сухое вещество). Он отличается от обычного портландцемента способностью придавать растворным и бетонным смесям повышенную подвижность. Пластифицирующий эффект используется для уменьшения водоцементного отношения, повышения морозостойкости и водонепроницаемости бетона. Если же сохранить В/Ц, то можно снизить расход цемента (примерно на 10-15%) без ухудшения качества бетона.
Гидрофобный портландцемент получают, вводя при помоле клинкера 0,1-0,2% мылонафта, асидола, синтетических жирных кислот, их кубовых остатков и других гидрофобизующих веществ. Он обладает пониженной (по сравнению с обычным цементом) гигроскопичностью, лучше сохраняет свою активность при хранении в перевозках. Гидрофобный портландцемент пластифицирует бетонные и растворные смеси, повышает морозостойкость и водонепроницаемость бетона.
К цементам с органическими добавками следует отнести и вяжущие низкой водопотребности (ВНВ), которые получают совместным помолом портландцемента и поверхностно-активного вещества суперпластификатора (С-3, 10-03, 30-03 и др.). Портландцемент домалывают до тонкости помола 4500...5000 см в присутствии суперпластификатора (обычно С-3 — сульфинированная меламино - формальдегидная смола) в порошкообразном состоянии. При этом зерна цемента капсулируются тончайшими оболочками из суперпластификатора. ВНВ характеризуется следующими свойствами:
— высокой тонкостью помола, что создает повышенную реакционную способность;
— водопотребностью 15... 18% (вместо 25...27% у обычного цемента);
— замедлением начала схватывания до 6-7 часов при сохранении конца схватывания до 10 часов;
— быстрым набором прочности в ранние сроки (через сутки предел прочности при сжатии составляет 25...30 МПа).
ВНВ является высокомарочным вяжущим. Его марки лежат в пределах 700-1000. Однако применение цементов таких высоких марок целесообразно лишь в высокопрочных бетонах. Для получения ВНВ марок 500...600, применяемых в тяжелых бетонах, при помоле вводят минеральные добавки (тонкомолотый кварцевый песок, зола-унос и др.) в количестве 30...50% от массы цемента.
Портландцементы с минеральными добавками
Активными минеральными добавками называют природные или искусственные вещества, которые при смешивании и тонко измельченном виде с воздушной известью и затворении водой образуют тесто, способное после твердения на воздухе продолжать твердеть и под водой.
Активные минеральные добавки (называемые иначе гидравлическими добавками) содержат двуоксид кремния в аморфном, а следовательно, в химически активном состоянии и способны поэтому взаимодействовать с гидроксидом кальция, образуя гидросиликаты кальция.
Активные минеральные добавки могут быть природными (естественными) и искусственными. В качестве природных активных добавок широко используют горные породы (диатомит, трепел, опоку, горелые глинистые породы — глиежи), а также породы вулканического происхождения (вулканический пепел, туф, пемзу, витрофир, трасс). Искусственные активные минеральные добавки представляют собой побочные продукты и отходы промышленности: быстро - охлажденные (гранулированные) доменные шлаки; белитовый (нефелиновый) шлам-отход глиноземного производства, содержащий в своем составе до 80% минерала белита (двухкальциевого силиката); зола-унос-отход, получившийся при сжигании твердого топлива в пылевидном состоянии и улавливаемый электрофильтрами и другими устройствами.
Использование отходов промышленности, в частности, для выпуска вяжущих веществ имеет большое народнохозяйственное значение.
Пуццолановый портландцемент изготовляют путем совместного помола клинкера и активной минеральной добавки с необходимым количеством гипса. Добавок осадочного происхождения (диатомита, трепела, опоки) должно быть не менее 20% и не более 30%, а вулканических добавок (пемзы, туфа), а также глиежа или топливной золы — не менее 25% и не более 40%. Активная минеральная добавка вначале адсорбирует, а затем химически связывает гидроксид кальция, образующийся при взаимодействии алита с водой: ™Ca(0H)2+Si02aifr+«H20 -> (0,8-1,5)Ca0 Si02pH20.
В результате этого процесса, происходящего во влажных условиях и при положительной температуре, растворимый гидроксид кальция связывается в практически нерастворимый гидросиликат кальция. Вследствие этого значительно возрастает стойкость бетона в отношении выщелачивания Са(ОН)2. Пуццолановый портландцемент следует применять для бетонов, постоянно находящихся во влажных условиях (подводные и подземные части сооружений). На воздухе бетон на пуццолановом портландцементе дает большую усадку и в сухих условиях частично теряет прочность, что объясняется «выветриванием» воды из гидратных соединений. Кроме того, бетоны на этом цементе имеют низкую морозостойкость и не годятся для сооружений, подвергающихся замораживанию и оттаиванию. Пуццолановый портландцемент твердеет в нормальных условиях
* Название происходит от итальянского г. Pozzuoli; рыхлая вулканическая порода — пуццолана — применялась еще в Древнем Риме, в качестве добавки к извести.
медленнее, чем портландцемент. Поэтому его не следует применять при зимних бетонных работах.
Пуццолановый портландцемент обладает сравнительно небольшим тепловыделением и часто применяется для бетонов внутренних частей массивных сооружений (плотин, шлюзов и т. п.).
Шлакопортландцемент — гидравлическое вяжущее вещество, твердеющее в воде и на воздухе. Он получается путем совместного тонкого помола клинкера и гранулированного доменного (или элек- тротермофосфорного) шлака с необходимым количеством гипса. Допускается раздельный помол компонентов и их последующее смещение. Количество доменного шлака в шлакопортландцементе должно быть не менее 21% и не более 80% (от массы цемента). Допускается замена до 10% шлака трепелом или другой активной добавкой.
Доменные шлаки по своему химическому составу напоминают цементный клинкер. В них преобладают оксиды (%): 30-50 СаО; 28-30 Si02; 8-24 А1203; 1-3 МпО; 1-18 MgO, общее содержание которых достигает 90-95%. Гидравлическая активность шлаков характеризуется коэффициентом качества.
%СаО + %MgO + %А1203 %Si02
С увеличением показателя коэффициента качества выше гидравлическая активность доменного гранулированного шлака, Ктп = 1.
Шлак, применяемый в качестве добавки к цементу, обязательно подвергается быстрому охлаждению водой или паром. Эта операция называется грануляцией, так как в процессе быстрого охлаждения шлаковый расплав распадается на отдельные зерна (гранулы). Быстрое охлаждение препятствует кристаллизации шлака, и он получается в стеклообразном и тонкозернистом химически активном состоянии. Поэтому гранулированный шлак является активным компонентом шлакопортландцемента, он взаимодействует с гидроксидом кальция с образованием низкоосновных гидросиликата (Ca0 Si02 2,5H20) и гидроалюмината (2Са0А1203'8Н20) кальция. Процесс твердения шлакопортландцемента значительно ускоряется при тепловлажностной обработке, поэтому его эффективно применять в сборных изделиях, изготовляемых с пропариванием.
Незначительное содержание в цементном камне Са(ОН)2 повышает стойкость шлакопортландцемента в мягких и сульфатных водах по сравнению с портландцементом. Тепловыделение при твердении шлакопортландцемента в 2-2,5 раза меньше, чем у портландцемента, поэтому он является самым подходящим цементом для бетона массивных конструкций. Шлакопортландцемент выгодно отличается от пуццоланового портландцемента умеренной водопотребностью, более высокой воздухостойкостью и морозостойкостью. Он успешно применяется как для надземных, так и подземных и подводных частей сооружений. Стоимость его на 15-20% ниже стоимости портландцемента.
Жаростойкость шлакопортландцемента значительно выше, чем у портландцемента, поэтому он широко используется для изготовления жаростойких бетонов. Однако шлакопортландцементу присущ тот же недостаток, что и пуццолановому портландцементу — он медленно набирает прочность в первое время твердения, в особенности при пониженных температурах. Этот недостаток устраняется в быстротвердеющем шлакопортландцементе, который обладает более интенсивным нарастанием прочности, чем обычный шлакопортландцемент. Обычньй шлакопортландцемент имеет марки: 300, 400 и 500.
Быстротвердеющий шлакопортландцемент М400 за 3 сут твердения должен приобрести прочность при сжатии не менее 200 кгс/см2 (20 МПа), при изгибе — не менее 35 кгс/см2 (3,5 МПа). Этот вид цемента эффективно применять в производстве бетонных и железобетонных изделий, изготовляемых с применением тепловлажностной обработки.
Гипсоцементнопуццолановые вяжущие (ГЦПВ) получают, смешивая полуводный гипс (50-75%), портландцемент (15-25%) и активную минеральную добавку (10-25%) по массе — трепел, диатомит и т. п. Эти вяжущие относят к числу гидравлических и применяют в заводском производстве санитарно-технических кабин, стеновых панелей и других конструкций.
Активная минеральная добавка необходима для обеспечения стабильности затвердевшего вяжущего. Портландцемент с гипсом не рекомендуется смешивать, так как получается неустойчивый материал, деформирующийся и разрушающийся вследствие образования высокосульфатной формы гидросульфоалюмината кальция, кристаллизующегося с 31-32 молекулами воды и значительным увеличением объема. Когда же свободной извести в жидкой фазе немного (СаО связывается добавкой в гидросиликаты кальция), то получается низкоосновный гидросульфоалюминат кальция без заметного увеличения объема. Добавка как бы ослабляет внутренние напряжения в цементном камне ГЦПВ и обеспечивает устойчивость его во времени.
Клинкер белого цемента изготовляют из чистых известняков и белых глин, почти не содержащих оксидов железа и марганца, которые придают обычному портландцементу зеленовато-серый цвет. Обжигают сырьевую смесь на беззольном (газовом) топливе. При помоле клинкера предохраняют цемент от попадания в него частиц железа.
В качестве эталона для определения степени белизны применяют молочное матовое стекло типа МС-14 с коэффициентом отражения не менее 95%. Степень белизны, определяемая коэффициентом отражения (в % абсолютной шкалы), должна быть для белого портландцемента 1-го сорта — не ниже 80%, 2-го сорта — 75%, 3-го сорта — 68%; цемент выпускают М400 и М500.
Цветные декоративные портландцементы получают, примешивая к белому цементу щелочестойкие пигменты (охру и др.).
Тампонажный портландцемент
Тампонажный портландцемент изготовляют измельчением клинкера, гипса и добавок. Он предназначен для цементирования нефтяных и газовых скважин. Цемент для холодных скважин испытывают при температуре 22±2 °С, для горячих скважин — при 75±3 °С. Основная прочностная характеристика цемента — предел прочности при изгибе образцов-балочек размером 4x4x16 см, изготовленных из цементного теста с В/Ц 0,5. Предусматривают выпуск специальных разновидностей портландцемента: утяжеленного, песчанистого, солестойкого, низкогигроскопичного.