Связь строения, состава и свойств
Строение и свойства
Знание строения строительного материала необходимо для понимания его свойств и в конечном итоге для решения практического
13
вопроса, где и как применить материал, чтобы получить наибольший технико-экономический эффект.
Строение материала изучают на трех уровнях: 1) макроструктура материала — строение, видимое невооруженным глазом; 2) микроструктура материала — строение, видимое в оптический микроскоп; 3) внутреннее строение веществ, составляющих материал, на молекулярно-ионном уровне, изучаемом методами рентгеноструктурного анализа, электронной микроскопии и т. п.
Макроструктура твердых строительных материалов* может быть следующих типов: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, рыхлозернистая (порошкообразная).
Искусственные конгломераты — это обширная группа, объединяющая бетоны различного вида, ряд керамических и других материалов.
Ячеистая структура характеризуется наличием макропор, свойственных газо - и пенобетонам, ячеистым пластмассам.
Мелкопористая структура свойственна, например, керамическим материалам, поризованным способами высокого водозатворе - ния и введением выгорающих добавок.
Волокнистая структура присуща древесине, стеклопластикам, изделиям из минеральной ваты и др. Ее особенностью является резкое различие прочности, теплопроводности и других свойств вдоль и поперек волокон.
Слоистая структура отчетливо выражена у рулонных, листовых, плитных материалов, в частности у пластмасс со слоистым наполнителем (бумопласта, текстолита и др.).
Рыхлозернистые материалы — это заполнители для бетона, зернистые и порошкообразные материалы для мастичной теплоизоляции, засыпок и др.
Микроструктура веществ, составляющих материал, может быть кристаллическая и аморфная. Кристаллические и аморфные формы нередко являются лишь различными состояниями одного и того же вещества. Примером служит кристаллический кварц и различные аморфные формы кремнезема. Кристаллическая форма всегда более устойчива. Чтобы вызвать химическое взаимодействие между кварцевым песком и известью, в технологии силикатного кирпича применяют автоклавную обработку отформованного сырца насыщенным водяным паром температурой не менее
Природные каменные материалы сюда не относятся, так как горные породы имеют собственную геологическую классификацию
14
175 °С и давлением 0,8 МПа. Между тем трепел (аморфная форма диоксида кремния) вместе с известью после затворения водой образует гидросиликат кальция при нормальной температуре 15-25 °С. Аморфная форма вещества может перейти в более устойчивую кристаллическую форму.
Практическое значение для природных и искусственных материалов имеет явление полиморфизма — когда одно и то же вещество способно существовать в различных кристаллических формах, называемых модификациями. Наблюдаются, например, полиморфные превращения кварца, сопровождающиеся изменением объема.
Особенностью кристаллического вещества является определенная температура плавления (при постоянном давлении) и определенная геометрическая форма кристаллов каждой его модификации.
Свойства монокристаллов неодинаковы в разных направлениях. Это механическая прочность, теплопроводность, скорость растворения, электропроводность и др. Явление анизотропии является следствием особенностей внутреннего строения кристаллов.
В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы беспорядочно. Подобные материалы рассматриваются как изотропные по своим строительно-техническим свойствам. Исключение составляют слоистые каменные материалы (гнейсы, сланцы и др.).
Внутреннее строение веществ, составляющих материал, определяет механическую прочность, твердость, тугоплавкость и другие важные свойства материала.
Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, образующими пространственную кристаллическую решетку. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе, или различных элементов, как в Si02); ионами (разноименно заряженными, как в CaCQ, или одноименными, как в металлах); целыми молекулами (кристаллы льда).
Ковалентная связь осуществляется обычно электронной парой, образуется в кристаллах простых веществ (алмаз, графит) и в кристаллах некоторых соединений из двух элементов (кварц, карборунд, другие карбиды, нитриды). Такие материалы выделяются очень высокой механической прочностью и твердостью, они весьма тугоплавки.
Ионные связи образуются в кристаллах тех материалов, в которых связь имеет преобладающе ионный характер. Распространенные строительные материалы этого типа гипс и ангидрид имеют невысокую прочность и твердость, неводостойки,
В сложных кристаллах, часто встречающихся в строительных материалах (кальцит, полевые шпаты), осуществляются и ковалентная, и ионная связи. Внутри сложного иона С032~ связь ковалентная,
но сам он имеет с ионами Са2+ ионную связь. Свойства подобных материалов весьма разнообразны. Кальцит СаС03 при достаточно высокой прочности обладает малой твердостью. У полевых шпатов сочетаются довольно высокие показатели прочности и твердости, хотя и уступающие кристаллам алмаза с чисто ковалентной связью.
Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристаллах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен из целых молекул, которые удерживаются друг около друга сравнительно слабыми вандер-ваальсовыми силами межмолекулярного притяжения (как в кристаллах льда). При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.
Силикаты, занимающие особое место в строительных материалах, имеют сложную структуру, обусловившую их особенности. Так, волокнистые материалы (асбест) состоят из параллельных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические воздействия, недостаточные для разрыва цепей, разделяют такой материал на волокна. Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки.
Сложные силикатные структуры построены из тетраэдров Si04, связанных между собой общими вершинами (общими атомами кислорода) и образующих объемную решетку. Это дало основание рассмотреть их как неорганические полимеры.
Состав и свойства
Строительный материал характеризуется химическим, минеральным и фазовым составом.
Химический состав строительных материалов позволяет судить о ряде свойств материала: огнестойкости, биостойкости, механических и других технических характеристиках. Химический состав не-
16
органических веществ (цемента, извести и др.) и каменных материалов удобно выражать количеством содержащихся в них оксидов (%). Основные и кислотные оксиды химически связаны между собой и образуют минералы, которые и определяют многие свойства материала.
Минеральный состав показывает, какие минералы и в каком количестве содержатся в вяжущем веществе или в каменном материале. Например, в портландцементе содержание трехкальциевого силиката (ЪСаО • Si02) составляет 45-60%, причем при большем его количестве ускоряется твердение, повышается прочность цементного камня.
Фазовый состав материала и фазовые переходы воды, находящиеся в его порах, оказывают влияние на все свойства и поведение материала при эксплуатации. В материале выделяют твердые вещества, образующие стенки пор, т. е. «каркас» материала, и поры, заполненные воздухом и водой. Если вода, являющаяся компонентом этой системы, замерзает, то образовавшийся в порах лед изменяет механические и тепломеханические свойства материала. Увеличение же объема замерзающей в порах воды вызывает внутренние напряжения, способные разрушить материал при повторных циклах замораживания и оттаивания.