Технологические схемы производства энергии
Практически все энергетическое топливо используется для получения тепловой энергии в виде пара и горячей воды. Исключение составляет топливо, которое непосредственно используется в системах печного, калориферного отопления, а также с применением газовых горелок инфракрасного излучения, когда продукты сгорания природного газа поступают непосредственно в отапливаемое помещение.
Устройства, предназначенные для получения пара или горячей воды повышенного давления за счет теплоты, выделяемой при сжигании топлива, или теплоты, подводимой от посторонних источников (обычно с горячими газами), называют котлами. По производимой продукции они делятся на паровые и водогрейные. Котлы, использующие (утилизирующие) теплоту отходящих из технологических печей газов или других основных и побочных продуктов, называют котлами-утилизаторами. В целях обеспечения стабильной и безопасной работы котла предусматривается установка вспомогательного оборудования, предназначенного для подготовки и подачи топлива, подачи воздуха, подготовки подачи воды, отвода продуктов сгорания топлива и их очистки от золы и токсичных примесей, удаления золошлаковых остатков топлива. В зависимости от вида сжигаемого топлива и других условий некоторые из указанных элементов могут отсутствовать. Котлы, снабжающие паром турбины, называют энергетическими. Для снабжения паром производственных потребителей и отопления зданий разработаны специальные производственные и отопительные котлы.
В качестве источников тепла для котлов используются природные и искусственные топлива, отходящие газы технологических печей и других устройств, ядерная энергия, а также возобновляемые источники энергии - солнечная энергия, ветер, вода рек и др. Значительная часть тепловой энергии превращается в электричество, как правило, на специальных производственных комплексах - электрических станциях. Энергию водного потока преобразовывают в электричество на гидроэлектростанциях (ГЭС). Водный поток вращает рабочие колесо турбины, которое соответственно приводит в движение ротор генератора, вырабатывающего электрический ток. На тепловых электростанциях (ТЭС) турбины вращает пар, вырабатываемый в котлах. На ТЭС производится в мире до 70 - 80 % электроэнергии. В настоящее время кроме паровых турбин на ТЭС используются газотурбинные установки. Получают распространение и электростанции с двигателями внутреннего сгорания на самых различных видах топлива - дизельном, природном газе, биогазе и др.
Коэффициент полезного действия современных ТЭС с паровыми турбинами достигает 40 %, с газовыми турбинами пока не более 37 %. Освоены также комбинированные установки с паровыми и газовыми турбинами (парогазовые установки - ПГУ) мощностью 250 МВт. Коэффициент полезного действия ПГУ может достигать 43 %. В 50-е годы ХХ века атомные электростанции (АЭС) также имеют паротрубный привод электрогенератора и отличаются от традиционных ТЭС лишь типом парогенератора (рис. 1.1). В целом по всему миру АЭС вырабатывают до 16 % электроэнергии.
По виду отпускаемой электроэнергии паротурбинные ТЭС делятся на конденсационные электрические станции (КЭС) и теплоэлектроцентрали (ТЭЦ). На КЭС установлены турбогенераторы конденсационного типа, они производят только электроэнергию.
ТЭЦ отпускают внешним потребителям электроэнергию и тепловую энергию с паром и горячей водой. Поскольку ТЭЦ связана с потребителями достаточно протяженными трубопроводами пара и горячей воды, это вызывает повышенные тепловые потери.
Рис. 1.1. Принципиальное устройство атомной станции |
В бывшем СССР был крен в сторону крупных и очень крупных станций. Например, установленная мощность Рефтинской ГРЭС (государственная районная электростанция) составляет 3800 МВт. При этом сжигается очень высокозольный экибастузский уголь.
В настоящее время все большее развитие получают системы распределенной (сотовой) энергетики, когда наряду с крупными энергоисточниками в единой системе функционируют мини-ТЭС с установленной мощностью от 1 МВт [71].
Сжатый воздух. Для производства сжатого воздуха используются различные компрессорные установки с электроприводом. При производстве дутья для доменных печей металлургических предприятий (доменного дутья) используются компрессоры с турбоприводом. В этом случае значительно снижаются удельные расходы электроэнергии, соответственно, 100 и 80 кВт /1000 м сжатого воздуха с давлением около 8 атм.
Кислород получают чаще всего из воздуха посредством реализации цикла глубокого охлаждения и разделения воздуха. К настоящему времени созданы воздухоразделительные установки различного назначения. Основой комплекса процессов цикла разделения воздуха является процесс ректификации - это физический способ, базирующийся на различии в температурах кипения отдельных компонентов воздуха. Этот процесс реализуется за счет низких температур. Хладоагентом чаще всего служит сам перерабатываемый воздух. Задача создания необходимого холода сводится к соответствующему уменьшению энтальпии воздуха. С этой целью применяют несколько способов:
• использование расширительной машины (детандера),
• использование эффекта Джоуля - Томсона, который заключается в том, что в ходе дросселирования сжатого воздуха при определенных условиях происходит понижение его температуры. В зависимости от схемы воздухоразделительной установки возможно получение технологического кислорода, содержащего 95 % кислорода, или технического кислорода, содержащего 99,5 % кислорода.