Электрогидравлический эффект и его применение в промышленности
Электрические схемы генераторов импульсов тока электрогидравлических устройств
Генератор импульсов тока (ГИТ) предназначен для формирования многократно повторяющихся импульсов тока, воспроизводящих электрогидравлический эффект. Принципиальные схемы ГИТ были предложены еще в 1950-х годах [4, 7, 9] и за истекшие годы не претерпели существенных изменений, однако значительно усовершенствовались их комплектующее оборудование и уровень автоматизации. Современные ГИТ предназначены для работы в широком диапазоне напряжения (5—100 кВ), емкости конденсатора (0,1 —10000 мкФ), запасенной энергии накопителя (10—106 Дж), частоты следования импульсов (0,1 —100 Гц).
Приведенные параметры охватывают большую часть режимов, в которых работают электрогидравлические установки различного назначения.
Выбор схемы ГИТ определяется в соответствии с назначением конкретных электрогидравлических устройств. Каждая схема генератора включает в себя следующие основные блоки: блок питания — трансформатор с выпрямителем; накопитель энергии — конденсатор; коммутирующее устройство — формирующий (воздушный) промежуток; нагрузка — рабочий искровой промежуток. Кроме того, схемы ГИТ включают в себя токоограничивающий элемент (это может быть сопротивление, емкость, индуктивность или их комбинированные сочетания). В схемах ГИТ может быть несколько формирующих и рабочих искровых промежутков и накопителей энергии. Питание ГИТ осуществляется, как правило, от сети переменного тока промышленной частоты и напряжения.
ГИТ работает следующим образом. Электрическая энергия через токоограничивающий элемент и блок питания поступает в накопитель энергии — конденсатор. Запасенная в конденсаторе энергия с помощью коммутирующего устройства — воздушного формирующего промежутка — импульсно передается на рабочий промежуток в жидкости (или другой среде), на котором происходит выделение электрической энергии накопителя, в результате чего возникает электрогидравлический удар. При этом форма и длительность импульса тока, проходящего по разрядной цепи ГИТ, зависят как от параметров зарядного контура, так и от параметров разрядного контура, включая и рабочий искровой промежуток. Если для одиночных импульсов специальных ГИТ параметры цепи зарядного контура (блока питания) не оказывают существенного влияния на общие энергет-ические показатели электрогидравлических установок различного назначения, то в промышленных ГИТ КПД зарядного контура существенно влияет на КПД электрогидравлической установки.
Использование в схемах ГИТ реактивных токоограничивающих элементов обусловлено их свойством накапливать и затем отдавать энергию в электрическую цепь, что в конечном счете повышает КПД.
Электрический КПД зарядного контура простой и надежной в эксплуатации схе{ды ГИТ с ограничивающим активным зарядным сопротивлением (рис. 3.1, а) весьма низок (30—35 %), так как заряд конденсаторов осуществляется в ней пульсирующими напряжением и током. Введением в схему специальных регуляторов напряжения (магнитного усилителя, дросселя насыщения) можно добиться линейного изменения вольт-амперной характеристики заряда емкостного накопителя и тем самым создать условия, при которых потери энергии в зарядной цепи будут минимальны, а общий КПД ГИТ может быть доведен до 90 % [4].
Для увеличения общей мощности при использовании простейшей схемы ГИТ кроме возможного применения более мощного трансформатора целесообразно иногда использовать ГИТ, имеющий три однофазных трансформатора, первичные цепи которых соединены «звездой» или «треугольником» и питаются от трехфазной сети. Напряжение с их вторичных обмоток подается на отдельные конденсаторы, которые работают через вращающийся формирующий -промежуток на один общий рабочий искровой промежуток в жидкости (рис. 3.1, б) [-|] . .4
При проектировании и разработке ГИТ электрогидравлических установок значительный интерес представляет использование резонансного режима заряда емкостного накопителя от источника переменного тока без выпрямителя. ОбгЦий электрический КПД резонансных схем очень высок (до 95 %), а при их использовании происходит автоматическое значительное повышение рабочего напряжения. Резонансные схемы целесообразно использовать при работе на больших частотах (до 100 Гц), но для этого требуются специальные конденсаторы, предназначенные для работы на переменном токе. При использовании этих схем необходимо соблюдать известное условие резонанса
Ш = 1 /л[ГС,
Где со—частота вынуждающей ЭДС; Ь—индуктивность контура; С— емкость контура.
Рис. 3.1. Принципиальные электрические схемы ГИТ электрогидравлических установок (Трі—ТрЗ — трансформаторы; — сопротивления в цепи сете Вого питания; VI—У4 — выпрямители; Ср — рабочий конденсатор; Сф — фильтровый конденсатор; 11—£.3— индуктивность (дроссели); ФП, ФП1, ФП2 — формирующие промежутки; РП—рабочий искровой промежуток |
Однофазный резонансный ГИТ (рис. 3.1, в) может иметь общий электрический КПД, превышающий 90%. ГИТ позволяет получать стабильную частоту чередования разрядов, оптимально равную либо однократной, либо двукратной частоте питающего тока (т. е. 50 и 100 Гц соответственно) при питании током промышленной частоты. Применение схемы наиболее рационально (. при мощности питающего трансформатора 15—30 кВт. В разрядный контур схемы вводится синхронизатор — воздушный формирующий промежуток, между шарами которого расположен вра-
Щающийся диск с контактом, вызывающим срабатывание формирующего промежутка при проходе контакта между шарами. При этом вращение диска синхронизируется с моментами пиков напряжения [4].
Схема трехфазного резонансного ГИТ (рис. 3.1,г) включает' в себя трехфазный повышающий трансформатор, каждая обмотка на высокой стороне которого работает как однофазная резонансная схема н^ один общий для всех или на три самостоятельных рабочих искровых промежутка при общем синхронизаторе на три формирующих промежутка. Эта схема позволяет получать частоту чередования разрядов, равную трехкратной или шестикратной частоте питающего тока (т. е. 150 или 300 Гц соответственно) при работе на промышленной частоте. Схема рекомендуется для работы на мощностях ГИТ 50 кВт и более. Трехфазная схема ГИТ экономичнее, так как время зарядки емкостного накопителя (той же мощности) меньше, чем при использовании однофазной схемы ГИТ. Однако дальнейшее увеличение мощности выпрямителя будет целесообразно' только до определенного предела [4].
Повысить экономичность процесса заряда емкостного накопителя ГИТ можно путем использования различных схем с фильтровой емкостью. Схема ГИТ с фильтровой емкостью и индуктивной зарядной цепью рабочей емкости (рис. 3.1, (3) позволяет получать, практически любую частоту чередования импульсов при работе на небольших (до 0,1 ^мкФ) емкостях и имеет общий электрический КПД — около 85 %. Это достигается тем, что фильтровая емкость работает в режиме неполной разрядки (до 20 %), а рабочая емкость заряжается через индуктивную цепь — дроссель с малым активным сопротивлением — в течение одного полу- периода в колебательном режиме, задаваемым вращением диска на первом формирующем . промежутке. При этом фильтровая емкость превышает рабочую в 15—20 раз [4].
Вращающиеся диски формирующих искровых промежутков сидят на одном валу и поэтому частоту чередования разрядов можно варьировать в очень широких пределах, максимально ограниченных лишь мощностью питающего трансформатора. В этой схеме могут быть использованы трансформаторы на 35—50 кВ, так как она удваивает напряжение. Схема может подсоединяться и непосредственно к высоковольтной сети.
В схеме ГИТ с фильтровой емкостью (рис. 3.1, е) поочередное подсоединение рабочей и фильтровой емкостей к рабочему искровому промежутку в жидкости осуществляется при помощи одного вращающегося разрядника — формирующего промежутка [6]. Однако при работе такого ГИТ срабатывание вращающегося разрядника начинается при меньшем напряжении (при сближении шаров) и заканчивается при большем (при удалении. шаров), чем это задано минимальным расстоянием между шарами разрядников. Это приводит к нестабильности основного параметра
Разрядов—.напряжения, а следовательно, к снижению надежности работы генератора.
Для повышения надежности работы ГИТ путем обеспечения заданной стабильности параметров разрядов в схему ГИТ с фильтровой емкостью включают вращающееся коммутирующее устройство — диск со скользящими контактами для поочередного предварительного бестокового включения и выключения зарядного и разрядного контуров.
При подаче напряжения на з'арядный контур генератора первоначально заряжается фильтровая емкость. Затем вращающимся контактом без тока (а значит, и без искрения) замыкается цепь, на шарах формирующего разрядника возникает разность потенциалов, происходит пробой и рабочий конденсатор заряжается до напряжения фильтровой емкости. После этого ток в цепи исчезает и контакты вращением диска размыкаются вновь без искрения. Далее вращающимся диском (также без тока и искрения) замыкаются контакты разрядного контура и напряжение рабочего конденсатора подается на формирующий разряднйк, происходит его пробой, а также пробой рабочего искрового промежутка в жидкости. При этом рабочий конденсатор разряжается, ток в разрядном контуре прекращается и, следовательно, контакты вращением диска могут быть разомкнуты вновь без разрушающего их искрения. Далее цикл повторяется с частотой следования разрядов, задаваемой частотой вращения диска коммутирующего устройства.
Использование ГИТ этого типа позволяет получать стабильные параметры неподвижных шаровых разрядников и осуществлять замыкание и размыкание цепей зарядного и разрядного контуров в бестоковом режиме, тем самым улучшая все показатели и надежность работы генератора силовой установки.
Была разработана также схема питания электрогидравли - ческих установок, позволяющая наиболее рационально использовать электрическую энергию (с минимумом возможных потерь). В известных электрогидравлических устройствах рабочая камера заземлена и поэтому часть энергии после пробоя рабочего искрового промежутка в жидкости практически теряется, рассеиваясь на заземлении. Кроме того, при каждом разряде рабочего конденсатора на его обкладках сохраняется небольшой (до 10 % от первоначального) заряд.
Опыт показал, что любое электрогидравлическое устройство может эффективно работать по схеме, в которой энергия, запасенная на одном конденсаторе С1, пройдя через формирующий промежуток ФП, поступает на рабочий искровой промежуток РП, где в большей своей части расходуется на совершение полезной работы электрогидравлического удара. Оставшаяся неизрасходованной энергия поступает на второй незаряженный конденсатор С2, где и сохраняется для последующего использования (рис. 3.2). После этого энергия дозаряженного до требуемого
значения потенциала второго конденсатора С2, пройдя через формирующий промежуток ФП, разряжается на_ рабочий искровой промежуток РП и вновь неиспользованная часть ее попадает теперь уже на первый конденсатор СУ и т. д.
Поочередное подсоединение каждого из конденсаторов то в зарядную, то в разрядную цепь производится переключателем /7, в котором токопроводящие пластины А и В, разделенные диэлектриком, поочередно подсоединяются к контактам 1—4 зарядного и разрядного контуров.
Колебательный характер процесса способствует тому, что переход энергии при разряде одного конденсатора на другой совершается с некоторым избытком (для заряжаемого конденсатора), что также положительно сказывается на работе этой схемы.
Для некоторых частных случаев указанную схему можно построить таким образом, чтобы после каждой подзарядки конденсатора (например, С1) энергией, «оставшейся» от предыдущего разряда на него конденсатора С2, последующий разряд конденсатора СІ шел через рабочий промежуток на землю, не поступая на подзарядку конденсатора С2. Такая работа будет эквивалентна работе сразу на двух режимах, что может быть эффективно использовано на практике (в технологических процессах дробления, разрушения, измельчения и др.).
Г“ I І я-ш і___ |
Я! |
I |
+ |
С1ф |
ФП |
РП |
Рис. 3.2. Электрическая схема питания электрогид - равлических установок |
©