НОВОЕ В ПЬЕЗОЭЛЕКТРИЧЕСКОЙ ТЕХНИКЕ
П |
Ьезоэлектрическая техника развилась в самостоятельную техническую отрасль в годы, предшествовавшие второй мировой войне. Этому во многом способствовал бурный рост радиотехники. Во время войны ежегодный выпуск кварцевых пластинок, предназначенных для работы в различных радиоприборах, исчислялся миллионами штук.
С каждым годом потребность в кварцевых пластинках продолжает расти. Неудивительно поэтому, что уже с первых своих шагов пьезоэлектрическая техника столкнулась с проблемой нехватки сырья.
Природные запасы кристаллов кварца ограничены. Добыча кварцевого сырья очень трудоёмка. Но дело не только в этом. Если внимательно рассмотреть кристалл кварца, то в его толще можно обнаружить множество дефектов. Особенно часты пузырьки, трещины, включения других минералов. Нередко кристалл состоит из нескольких сросшихся между собой частей с различно направленными координатными осями. Поэтому только незначительная часть объёма кварцевого кристалла пригодна для производства пьезоэлектрических пластинок. Так, например, в кристаллах высшего (уникального) сорта для изготовления пластинок может быть использовано лишь 20% объёма. А в кристаллах самого низкого (третьего) сорта используется всего 1—2% объёма.
Всё это заставило учёных подумать об искусственном выращивании кварцевых кристаллов.
Уже довольно давно люди научились получать искусственные рубины и сапфиры. Поэтому казалось, что выращивание искусственного (синтетического) кварца не должно вызвать особых затруднений. Однако первые же опыты, проведённые в начале нашего столетия, показали, насколько трудна эта задача. Синтетические кристаллы кварца получались столь мелкими, что об их практическом применении не могло быть и речи. Только совсем недавно ценой многолетних настойчивых поисков и многочисленных опытов удалось получить искусственные кристаллы, пригодные для промышленных целей.
Выращивание синтетических кристаллов производится в специальных герметических (воздухонепроницаемых) резервуарах — автоклавах — при высоких температурах и под большими давлениями.
По своему качеству пьезоэлектрические пластинки, изготовленные из синтетических кристаллов кварца, не уступают пластинкам из природного кварца.
Однако искусственные кристаллы пока ещё дороги, размеры их не удовлетворяют производственных потребностей. Поэтому одной из самых важных задач, стоящих перед пьезокварцевой техникой, является создание более совершенных способов выращивания искусственных кристаллов кварца. Не подлежит сомнению, что такие способы будут разработаны в недалёком будущем.
Другая проблема пьезоэлектрической техники — это создание дешёвого искусственного пьезоэлектрика, способного заменить кварц в некоторых областях применения. В решении этой проблемы также уже сделаны первые успешные шаги. В годы Великой Отечественной войны были созданы новые синтетические кристаллы, близкие по своим свойствам к кристаллам кварца. Среди них особый интерес представляют кристаллические вещества сложного химического состава — виннокислый калий и этилендиа - минтартрат. Эти кристаллы растворимы в воде, однако значительно более влагостойки, чем, например, сегнетова соль. По механической прочности они уступают кварцу, но зато превосходят его по силе пьезоэлектрического эффекта.
Собственная частота резонаторов из виннокислого калия и этилендиаминтартрата так же, как и кварцевых ре
Зонаторов, мало зависит от температуры; отклонение частоты при нагреве или охлаждении резонаторов из сегне - товой соли в тысячи раз больше.
Благодаря своим достоинствам виннокислый калий и этилендиаминтартрат уже находят применение в фильтрах для радиотелефонии.
Резонаторы из этих кристаллов могут быть использованы и для стабилизации частот радиопередатчиков в тех случаях, когда требования к устойчивости частоты колебаний не слишком велики. Некоторые типы пьезоэлектрических резонаторов имеют довольно большие размеры (до 10 см) и для их изготовления требуется много сырья. В этом случае применение дешёвых кристаллов этиленди- аминтартрата представляет особый интерес.
Были предприняты и поиски заменителей сегнетовой соли. Сегнетова соль при всей её дешевизне имеет, как уже говорилось, ряд крупных недостатков. Она хрупка, отличается малой влагостойкостью, низкой температурой плавления и т. д. Требовалось найти дешёвые синтетические кристаллы, которые, с одной стороны, были бы близки к сегнетовой соли по силе пьезоэлектрического эффекта, а с другой стороны, не имели её недостатков.
Такие кристаллы были найдены. Это дигидрофосфат аммония — кристаллическое вещество со сложным химическим составом, которое обладает довольно сильным пьезоэлектрическим эффектом, отличается достаточно высокой механической прочностью, плавится при температуре около 190° Ц и сохраняет неизменность свойств при нагревании до 100°. Дигидрофосфат аммония растворим в воде, однако в противоположность сегнетовой соли влагостоек и может подолгу находиться во влажном воздухе.
Поэтому в последнее время дигидрофосфат аммония начинает вытеснять сегнетову соль. Во время второй мировой войны пластинки из кристаллов этого вещества стали применять в излучателях ультразвука. Недавно в Советском Союзе были разработаны конструкции пьезоэлектрических микрофонов, звукоснимателей и других приборов с пьезоэлементами из дигидрофосфата аммония.
По мере развития пьезоэлектрической техники непрерывно совершенствуются методы производства и конструкции пьезоэлементов и резонаторов.
Так, раньше в пьезоэлектрических резонаторах применялись накладные электроды в виде плоских металлических пластин. Теперь электроды делают в виде тонкого серебряного или золотого слоя, нанесённого на поверхность пластинки. Такая конструкция резонатора значительно улучшает его резонансные свойства.
Высококачественные кварцевые резонаторы собираются в стеклянных или металлических баллонах, из которых
Рис 30. Внешний вид вакуумированного резонатора с электродами в виде тонкого металлического слоя. |
Откачивается воздух. Такие резонаторы называются ва- куумированными. Они отличаются исключительно высокими резонансными свойствами, так как разреженный воздух оказывает меньшее сопротивление колебаниям пластинки.
Внешний вид вакуумированного резонатора с электродами в виде тонкого металлического слоя показан на рис. 30. В современном пьезокварцевом производстве широко применяется автоматика. Так, например, шлифовка пластин производится на специальных плоскошлифовальных станках-автоматах.
Большие успехи достигнуты и в разработке электрических приборов с пьезорезонаторами. Созданы источники электрических колебаний с кварцевой стабилизацией, обладающие исключительно высокой стабильностью. Частота колебаний, создаваемых подобным источником, в течение месяца изменяется всего на несколько миллионных долей процента.
Такие высокостабильные генераторы электрических колебаний называют стандартами или эталонами частоты. С их помощью можно определять не только частоту, но и время.
Существуют так называемые синхронные электромоторы, отличительной особенностью которых служит строгая зависимость числа оборотов в минуту от частоты переменного электрического тока, питающего мотор. Если частота подводимого к мотору тока строго постоянна, то строго постоянно и число оборотов в единицу времени.
Предположим, что синхронный электромотор соединён с зубчатым механизмом, вращающим часовые стрелки. Ясно, что точность таких часов будет зависеть от того, насколько стабильна частота переменного тока. Если к синхронному мотору подвести переменный ток, создаваемый стандартом частоты, то часы будут спешить или отставать всего на несколько десятитысячных долей секунды в сутки.
С обычными часами получить такую точность невозможно. Вот почему стандарты частоты применяются для особо точного измерения времени.
Мы рассмотрели далеко не все достижения современной пьезоэлектрической техники. Но и приведённые нами примеры свидетельствуют о её большом будущем.
Когда-то пьезоэлектрический эффект считали лишь «научным курьёзом». Жизнь опровергла это ошибочное мнение. «Научный курьёз» превратился в мощное орудие практики, положил начало новой технической отрасли. Несомненно, что в этой области будет сделано ещё немало открытий, ибо человеческое познание беспредельно.