СВОБОДНЫЕ ЭЛЕКТРОНЫ
В |
металле, как и во всех твёрдых телах, каждый атом занимает определённое место. Правда, при некоторых условиях атомы твёрдых тел могут покидать свои места, но во всяком случае они долгое время остаются «привязанными» к определённому месту. В зависимости от температуры каждый атом более или менее сильно колеблется около этого места, не удаляясь от него сколько - нибудь далеко. В отличие от других твёрдых тел металлы обладают одной интересной особенностью: в пространстве между атомами металлов движутся свободные электроны, то-есть электроны, не связанные с определёнными атомами.
Откуда берутся такие свободные электроны?
Дело в том, что в атомах не все электроны одинаково прочно удерживаются ядром. В электронных оболочках атомов металлов всегда есть один, два или три электрона, очень слабо связанных с ядром. Поэтому, например, при растворении различных солей входящие в их состав атомы металлов легко отдают эти электроны другим атомам, а сами превращаются в положительные ионы. Отрыв электронов от атомов происходит и в куске любого металла, но все электроны, утерявшие связь с атомами, остаются в самом металле между образовавшимися ионами.
Число свободных электронов в металле огромно. Их примерно столько же, сколько атомов. Тем не менее весь кусок металла остаётся, конечно, незаряженным, так как положительный заряд всех ионов в точности равен отрицательному заряду всех электронов.
Таким образом, строение металла мы может себе представить в таком виде. Атомы металла, потерявшие по 1—2 электрона, стали ионами. Они сравнительно прочно сидят на своих местах и образуют, можно сказать, жёсткий «скелет» куска металла. Между ионами быстро движутся по всем направлениям электроны. Некоторые из электронов при движении тормозятся, другие ускоряются, так что среди них всегда есть и быстрые и медленные.
Движение свободных электронов вполне беспорядочно. Нельзя уловить в нём никаких струек или потоков, никакой согласованности. Свободные электроны движутся в металле приблизительно так, как мечутся мошки в тёплом воздухе летним вечером: в рое каждая из мошек летает сама по себе то быстрее, то медленнее, а весь рой стоит на месте.
Среди беспорядочно движущихся электронов всегда есть такие, которые летят по направлению к поверхности металла. Будут ли они вылетать из металла? Ведь если оставить открытым сосуд с газом, молекулы которого также находятся в беспорядочном движении, как и электроны в металле, то молекулы газа быстро рассеются в воздухе. Однако электроны в обычных условиях не вылетают из металла. Что же их удерживает? Притяжение ионами. Когда электрон поднимается немного над поверхностью металла, над ним уже нет ионов, а внизу, на поверхности, есть. Эти ионы притягивают поднявшийся электрон, и он падает обратно на поверхность металла, как падает на землю брошенный вверх камень.
Если бы камень имел достаточно большую начальную скорость, он мог бы преодолеть притяжение Земли и
Рис. 7. Вырванные из раскалённого катода электроны устремляются к аноду только тогда, когда анод заряжен положительно. |
Улететь в межпланетное пространство, как улетает пушечное ядро в романе Жюль Верна. Очень быстрые электроны тоже могут преодолеть силы электрического притяжения и покинуть металл. Это и происходит при нагревании.
При нагревании металла усиливается движение не только атомов, но и электронов, и при высокой температуре из металла вылетает столько электронов, что их поток можно обнаружить. Посмотрите на рис. 7. На нём изображена необычная электрическая лампочка. В её баллоне на некотором расстоянии от нити накала укреплена металлическая пластинка. Пластинка называется анодом, а нить — катодом. К одному концу нити (всё равно к какому) и к аноду присоединена батарея, а между батареей и анодом в так называемую «анодную» цепь включён прибор, показывающий наличие электрического тока. Прибор этот называется гальванометром. Сама нить лампы включена в электрическую сеть и раскалена. Если анод соединён с отрицательным полюсом батареи, а нить с положительным, то тока в анодной цепи не будет (рис. 7 слева). Теперь попробуем поменять полюсы и присоединим пластинку к «плюсу» батареи. В цепи сейчас же появится ток (рис. 7 справа). Этот опыт показывает, что раскалённая нить лампы действительно испускает отрицательные заряды — электроны, которые отталкиваются от анода, если он заряжен отрицательно (рис. 7 слева), и увлекаются электрическими силами к аноду, если он присоединён к положительному полюсу батареи (рис. 7 справа).
Испускание электронов накалёнными металлами имеет огромное практическое значение. Достаточно сказать, что оно используется во всех радиолампах (о радиолампах мы ещё будем говорить в последнем разделе книжки).
Увеличить энергию электронов и заставить их вылетать из металла можно не только нагреванием, но и освещением. Такие явления изучил в 1888 году русский физик, профессор Московского университета А. Г. Столетов. Поток световых лучей несёт энергию, и если свет падает на металл, то часть этой энергии поглощается металлом и передаётся электронам. Получив добавочную энергию, некоторые электроны преодолевают притяжение ионов и вылетают из металла. Это явление называется фотоэлектрическим эффектом. Фотоэффект используется в очень важном для техники приборе — фотоэлементе. Схема фотоэлемента показана на рисунке 8.
Стеклянный баллон, из которого удалён воздух, покрыт изнутри слоем металла, обычно натрия, калия или цезия, подвергнутого особой обработке (из этих металлов электроны легко вырываются при действии видимого света); не покрыто металлом только небольшое окошечко для пропускания света. Слой металла служит катодом фотоэлемента (фотокатодом). В середине баллона помещается или тонкая металлическая проволочка или сетка. Это — анод. Фотокатод соединяется с отрицательным полюсом батареи, а анод — с положительным. Как только на фотокатод упадут световые лучи, некоторые электроны приобретают большую энергию и вырываются с его поверхности. Сила электрического притяжения гонит их к аноду, и в цепи появляется ток. Если же освещение прекращается, ток исчезает[1]). Заметим, что обоими описанными способами удается извлекать из металлов только очень небольшую часть имеющихся в них свободных электронов.
Рис. 8. Схема действия фотоэлемента. |
Легко понять, что электризация трением представляет собой процесс вырывания электронов. Так, например, при трении стекла о кожу электроны, извлечённые из стекла, переходят на кожу.
Итак, мы знаем, что электроны можно извлечь из атомов. Посмотрим теперь, как можно управлять электронами, покинувшими атомы.