Активные минеральные добавки
Еще в древности было известно, что смешением воздушной извести с вулканическим туфом можно получить гидравлически твердеющее вяжущее. Задолго до нашей эры греки для изготовления стойких в пресной и морской воде гидравлических растворов применяли туф Санторинского месторождения, а римляне — вулканический туф с месторождения Поццуоли. Такие добавки в последующем и были названы пуццоланами, а цементы, их содержащие, — пуццолановыми.
Известково-пуццолановые цементы, полученные путем совместного тонкого измельчения воздушной либо гидравлической извести с активной минеральной добавкой при небольшой дозировке гипса отличаются медленным твердением, невысокой прочностью, малой воздухо - стойкостью. С появлением портландцемента изВестКо - во-пуццолановые цементы постепенно утрачивали свое значение в гидротехническом строительстве. В настоящее время промышленное их производство краппе ограничено. Однако стал широко применяться пуццолановый портландцемент, содержащий активные минеральные добавки.
Активные минеральные добавки — это неорганические природные и искусственные материалы, обладающие гидравлическими и (или) пуццоланическими свойствами. При смешении в тонкоизмельченном виде с гид - ратной известью и гипсом при затворении водой они должны образовывать тесто, способное после предварительного твердения на воздухе продолжать твердеть под водой. Активные минеральные добавки вводят в состав цементов для улучшения их строительно-технических свойств. Добавками осадочного происхождения являются — диатомит, трепелы и опоки.
К активным минеральным добавкам вулканического происхождения относятся пеплы, туфы, пемзы, витрофи - ры и трассы. Это продукты извержения вулканов, отложившиеся на разном расстоянии от места извержения и в различной степени охлажденные; при резком охлаждении из пород быстро выделяются газы, что повышает их пористость. В зависимости от последующего воздействия атмосферных агентов и степени уплотнения они разделяются на рыхлые пеплы — пуццоланы, камневид - ные пористые — вулканические туфы и сильно уплотненные разности—трассы.
Для пемзы характерно пористое губчатое строение, она представляет собой вспученное вулканическое стекло. Витрофиры имеют порфировую структуру и состоят на 75—85% из темного вулканического стекла. В их состав входят также полевые шпаты, кварц и др. Резкое охлаждение выбрасываемых из вулканов пород приводит к быстрой их закалке, что способствует образованию в них вулканического стекла. Они содержат также щелочные алюмосиликаты цеолитового характера, кристаллы полевого шпата, авгита и др. Иногда минералы бывают остеклованными.
К искусственным добавкам относятся: кремнеземистые отходы, получаемые при извлечении глинозема из глины; искусственные обожженные в соответствующих керамических печах либо в самовозгорающихся отвалах пустых шахтных пород глины и глинистые и углистые сланцы; золы, зола-унос и шлаки, получающиеся при сжигании некоторых видов топлива; для них характерно преобладающее содержание кислотных оксидов. В ГОСТ из этих добавок указаны только кислые золы-унос; стандартом регламентированы и такие искусственные добавки, как доменные гранулированные шлаки, а также белитовый (нефелиновый шлам), получаемый при комплексной переработке нефелинов и содержащий до 80% минерала белита, частично гидратированного.
Активные минеральные добавки Способны химически взаимодействовать с гидроксидом кальция; в диатомите и трепелах в реакцию вступает содержащийся в их составе кремнезем. К. Г. Красильников, исследуя поверхностные свойства гидратированного кремнезема и его взаимодействие с гидроксидом кальция в водной среде, установил, что одной из важнейших характеристик является природа поверхности кремнезема; строение поверхностного слоя характеризуется расположением тетраэдров Si04, только частично связанных с объемной структурой, причем свободные углы этих тетраэдров, выходящие на поверхность, представляют собой гидроксильные группы.
Реакция гидроксида кальция с кремнеземом начинается с поверхности зерен и постепенно захватывает более глубокие слои; образуются гидросиликаты тобермори - товой группы CSH (В) с явно выраженным пластинчатым строением кристаллов. Иногда кремнекислоту, содержащуюся в осадочных породах, называют «активной». В действительности активной, так же как и неактивной кремнекислоты не существует. Например, наши-, ми опытами было установлено, что тонкоизмельченный кварцевый песок проявляет «активность», взаимодействуя с гидроксидом кальция и особенно сильно при несколько повышенной (348К) температуре.
Нами отмечалось, что развивающиеся при механическом диспергировании кварца деформации нарушают кристаллическую структуру поверхностного слоя и несколько аморфизируют его. Деструктированные в результате этого Слои кварца обладают высокой химической активностью, в частности по отношению к воде, что выражается в повышенной их растворимости.
Выше уже указывалось, что глиежи и золы-уноса являются продуктом обжига глинистых материалов. По мнению одних ученых, обжиг каолинитовых глин в интервале 873—1073К приводит к разложению каолинита на кремнезем и глинозем, по мнению других — к образованию метакаолинита. Независимо от вида и состава образующихся продуктов обжига они интенсивно взаимодействуют с гидроксидом кальция, причем установлено, что при этом образуется неизвестное ранее соединение — гидрогеленит (гидроалюмосиликат кальция) — 2СаО-АЬОз-SiO-2-8Н20, а при соответствующей концентрации извести и ЗСаО• 2Si02a<7. При повышении температуры обжига глинистых материалов > 1073К качество их, как активных добавок, снижается. Важно также минимальное содержание в них растворимого глинозема. Например, максимально допустимое содержание растворимого глинозема для глиежей — 2%.
Более сложной представляется природа гидравлической активности пород вулканического происхождения. Кремнезем и глинозем в них можно считать потенциально способными взаимодействовать с гидроксидом кальция. Однако это зависит от их структурных связей в составе породы. Наибольшей активностью обладает вулканическое стекло. Существенную роль в химическом связывании гидроксида кальция играют щелочные алюмосиликаты (анальцим — Na20-Al203-4Si02-2H20 и др.), являющиеся цеолитами и способные обменивать содержащиеся в них ионы щелочных металлов на ионы двухвалентных металлов и, в частности, извести. Как известно, такой ионный обмен смягчает жесткую воду. Исследования показали, что реакции обмена протекают в значительной степени при повышении температуры до 313—323 К, причем в течение года в раствор переходит до 85% содержащихся в породе щелочей.
Однако нарастание во времени прочности пуццолано - вого портландцемента объяснить этими реакциями нельзя, так как при обмене ионов щелочей на ионы кальция кристаллическая решетка цеолита сохраняется и, следовательно, нельзя ожидать такого изменения их структуры, которое повлияло бы на прочность цемента. Действие гидроксида кальция проявляется не только в этой обменной реакции. Полагают, что разрушается цеолитовая структура, благодаря чему кремнезем и глинозем связывают гидроксид кальция, образуя гидросиликаты кальция и возможно гидроалюмосиликаты кальция. Качество активных минеральных добавок будет зависеть также от содержания растворимого глинозема, т. е. в данном случае способного к взаимодействию с известью.
Примерный химический состав активных минеральных добавок приведен в табл. 19.
Таблица 19. Химический состав (%) активных минеральных добавок
|
Некоторые добавки вулканического происхождения содержат до 8°/о щелочей, а зола-унос до 4—5%.
Для получения физико-химической характеристики активных минеральных добавок необходимо применять методы химического, петрографического, рентгенострук- турного и дифференциального термического анализов. Наряду с этим необходимы всесторонние испытания цементов, полученных путем совместного тонкого измельчения клинкера и гипса с различным содержанием изучаемой активной минеральной добавки. Исследуются прочностные показатели цементов с активными минеральными добавками, при твердении выявляются их строительно-технические свойства по сравнению с исходным портландцементом в растворах и бетонах.