Оптимизация технологического регламента изготовления пенобетонов

Омагничивание водно-дисперсных систем применительно к прикладному бетоноведению

Задаваясь проблемой повышения прочности строительных изделий на основе цементов, нужно знать до каких прочностных показателей можно дойти хотя бы теоретически. Иными словами – какова максимально достижимая прочность для тяжелых цементных бетонов – самых прочных из всех бетонов, применяемых в строительстве?

В лабораторных условиях, методом горячего прессования при температуре 250 оС и давлении 3500 кг/см2 удалось достичь следующих показателей прочности на сжатие: через 1 сутки Rсж=4120 кг/см2, а через 90 суток – Rсж=6550 кгсм2. Это более чем в 10 раз превышает самую высокую достижимую прочность бетона получаемую в обычных условиях.

Что послужило залогом столь высоких прочностных показателей? – В первую очередь, конечно, оптимальность подбора компонентов экспериментальной бетонной смеси. И, что немаловажно, очень малое водоцементное соотношение - менее 0.1 (в жизни редко удается опуститься ниже В/Ц=0.35). Кроме того, комплекс мероприятий – низкое В/Ц, направленная гидратация новообразований под воздействием высоких температур и давлений обеспечили и очень низкую пористость такого бетона, - на уровне всего 2 – 3%. А ведь именно внутренняя пористость в основном и формирует прочностные характеристики бетона – чем она меньше, тем прочность выше.

Если учесть, что пористость большинства серийно выпускаемых ячеистых бетонов составляет примерно 70% , что соответствует плотности в районе 800 кг/см3 – можно предположить, что и теоретически максимально достижимая для них прочность должна находится, где-то в районе 150 – 180 кгсм2. Сказочные числа. Жизнь корректирует их в меньшую сторону многократно.

Чтобы не путаться в дальнейшем, давайте строго определимся – в ячеистых бетонах существует пористость двух уровней. Макропоры, сформированные пеной и(или) выделяющимися газами формируют ячеистую структуру бетона. Оптимальность их геометрических размеров и распределения в массиве бетона очень сильно отражается на его, как теплофизических, так и прочностных характеристиках (эту тему мы рассмотрели ранее).

Но существуют еще и поры микроуровня – в дальнейшем я их так и буду называть, которые имеют размерность, выражаемую в микронах. Это чрезвычайно мелкая, различимая только под очень мощным микроскопом, микропористость цементного камня. Она формируется на стадии гидратации цемента, в результате его химических реакций с водой и самым непосредственным образом отражается не только на прочностных характеристиках пенобетона, но и на эксплуатационных – водопроницаемости, водопоглощении, морозостойкости, трещиностойкости и т. д.

И если пористость на макро - уровне регулируется мерами технологического характера, в обобщенном виде – соотношением пены (или выделившегося газа) с цементным клеем, то на микро- пористость можно воздействовать исключительно на уровне химических реакций протекающих при затворении цемента водой. Поэтому, рассматривая проблему в этом ключе, пытаясь понять пути направленной модификации этих химических реакций и явлений, им сопутствующих, решение следует искать в плоскости оптимизации именно химических реакций, и по методологии, принятой в современной химической науке.

Интерпретируя общую химическую технологию применительно к нашим нуждам – химической реакции взаимодействия между веществами, формирующими пенобетон и водой следует, для начала, определится – а что ж у нас, в конце концов, вступает во взаимодействие? И хотя этот перечень будет не исчерпывающе полным (особенно с позиций академического бетоноведения – да простят меня коллеги), в первом приближении я предлагаю, остановится на следующих веществах вступающих в реакцию: вода, вяжущее, заполнитель, наполнитель и некое вещество “Х” привнесенное в систему пенно - или газообразователем. Условия протекания реакции, обусловленные внешним влиянием среды, также существенны. Но самыми главными следует все же признать – температуру, влажность и наружное давление. Причем эти параметры важны как сами по себе, так и скорость их изменчивости (градиент) во времени.

Модификация как веществ, вступающих в химическую реакцию, так и условий протекания этой реакции, в той или иной мере, несомненно, отражаются на конечной прочности. Но подобная модификация не всегда оправдана экономически. Чтобы отобрать наиболее действенные, но дешёвые приемы нужно, для начала, рассмотреть их все в отдельности. А затем попробовать скомпоновать их в оптимальный тех. процесс.

С этого и начнем.

 

Оптимизация технологического регламента изготовления пенобетонов

 Спиральный перегрузчик цемента

(Приведено по материалам, впервые опубликованным в: УСборник материалов по обмену опытом в строительстве. Новое в производстве строительных материалов. Бюллетень строительной техники № 18, 1956 г. Ф Автор: инж. Дидык В. …

 Специализированное оборудование для хранения и транспортирования цемента

Как показала наша практика, очень удобными для качественного хранения без значительной потери активности и порционной выдачи цемента являются специализированные емкости со шнеками на дне. Ёто специальной формы бункера, вмещающие 8 …

Винтовые конвейеры

Винтовые конвейеры (шнеки) применяются для транспортирования цемента, гравия, песка, шлака, мокрой глины, бетонной смеси на расстояние 30 - 40 м. Они могут перемещать материалы под углом до 20°; в отдельных …

Как с нами связаться:

Украина:
г.Александрия
тел./факс +38 05235  77193 Бухгалтерия

+38 050 457 13 30 — Рашид - продажи новинок
e-mail: msd@msd.com.ua
Схема проезда к производственному офису:
Схема проезда к МСД

Партнеры МСД

Контакты для заказов оборудования:

Внимание! На этом сайте большинство материалов - техническая литература в помощь предпринимателю. Так же большинство производственного оборудования сегодня не актуально. Уточнить можно по почте: Эл. почта: msd@msd.com.ua

+38 050 512 1194 Александр
- телефон для консультаций и заказов спец.оборудования, дробилок, уловителей, дражираторов, гереторных насосов и инженерных решений.